NEPR

Received:

Oct 4, 2022

11:37 PM

GOVERNMENT OF PUERTO RICO PUERTO RICO PUBLIC SERVICE REGULATORY BOARD PUERTO RICO ENERGY BUREAU

IN RE: INTERRUPCIÓN DE SERVICIO ELÉCTRICO DE 6 DE ABRIL DE 2022

CASE NO. NEPR-IN-2022-0002

SUBJECT:

Motion Submitting Root Cause Evaluation of April 6th Incident and Request for Confidential Treatment

MOTION SUBMITTING ROOT CAUSE EVALUATION OF APRIL 6^{TH} INCIDENT AND REQUEST FOR CONFIDENTIAL TREATMENT

TO THE HONORABLE PUERTO RICO ENERGY BUREAU:

COME now LUMA Energy, LLC ("ManagementCo") and LUMA Energy ServCo, LLC ("ServCo") (jointly referred to as the "Operator" or "LUMA"), and respectfully state and request the following¹:

- 1. On April 6th, 2022, a failure in the electric system led to a fire at the Costa Sur transmission substation and a power outage of the entire electrical system (hereinafter, the "April 6th Incident").
- 2. On April 8th, 2022, this Honorable Puerto Rico Energy Bureau ("Energy Bureau") issued a Resolution and Order whereby it initiated an investigation of the April 6th Incident ("April 8th Order").
- 3. LUMA, in its role as the operator of the Puerto Rico Transmission and Distribution system, believes it is critical that a transparent and scientific investigatory process is followed to

¹ Capitalized terms not defined herein shall have the meaning ascribed to them in LUMA's *Motion Submitting Updated Report and Request for Confidential Treatment*, filed in this Energy Bureau on April 18th, 2022.

Bureau's April 8th Order. Multiple steps occurred as part of this investigatory process in order to fully comply with the investigation ordered by this Energy Bureau, understand the April 6th Incident in its entirety, and reduce the probability of similar events occurring in the future. To that end, a scientific and rigorous investigation and a forensic analysis was led by a third-party investigation firm, Exponent, led by Dr. Richard Brown. Dr. Richard Brown is an internationally recognized industry expert in power system reliability including major event investigation and root-cause analysis. Throughout the investigation, Exponent led the outage investigation analysisand provided associated recommendations for corrective actions that led to the final report that is filed as **Exhibit 2** to this Motion.

- 4. In connection with the April 8th Order, on April 12th, 2022, in compliance with the April 8th Order, LUMA submitted the Preliminary Report of the April 6th Incident. The Preliminary Report included the information that LUMA had gathered thus far, preliminary findings and assessments of the April 6th Incident, and a summary of the corrective actions taken by LUMA.
- 5. On April 14th, 2022, to aid the Energy Bureau in its investigation and supplement the Preliminary Report, LUMA filed a *Motion to Supplement Preliminary Report on April 6th Incident*. Therein, LUMA submitted two (2) video recordings, including a screen recording from the Costa Sur transmission substation that shows a few minutes before and after the failure at the Costa Sur Substation's 230kV switchyard on April 6th, and an aerial view video of the Costa Sur Substation taken the morning after the April 6th Incident.
- 6. On April 18th, 2022, in compliance with the April 8th Order, LUMA filed a *Motion Submitting Updated Report and Request for Confidential Treatment.* Therein, LUMA submitted the Updated Report of the April 6th Incident, which provided an update on the following topics:

- i. Overview of third-party industry expert hired to assist with analysis;
- ii. Outage investigation update and proactive maintenance plan/strategy;
- iii. System analysis update including adding dynamic stability analysis into model; and
- iv. Ongoing restoration activities at Costa Sur.
- 7. On April 22nd, 2022, the Energy Bureau issued a Resolution and Order instructing LUMA and PREPA to submit, on or before May 6th, 2022, at noon, certain documents, and information in connection with the April 6th Incident ("April 22nd Order").
- 8. On May 9th, 2022, LUMA submitted all documents and information in its possession, custody, and control, which were responsive to the Energy Bureau's requests for documents and information. They included a sworn statement signed by Darrell Wilvers, LUMA's Director of Asset Management, stating that the documents produced were exact copies of the original documents and that the information provided was true and correct. Further, LUMA also submitted a Second Updated Report of the April 6th Incident, which provided an update on the schedule and status of the investigation.
- 9. In the Second Updated Report of the April 6th Incident, LUMA informed the Energy Bureau that the remaining elements of the investigation schedule included a Root Cause Evaluation Report of the April 6th Incident (the "Root Cause Evaluation Report) that would be submitted on or before September 23, 2022.
- 10. On September 23, 2022, LUMA filed an informative motion to inform the Energy Bureau that due to the unforeseen event beyond LUMA's control of the passage through Puerto Rico of Hurricane Fiona (a Category 1 Hurricane), LUMA would not be able to file the Root Cause Evaluation Report on or before September 23, 2022 as indicated in Second Updated Report. Due

to the island-wide emergency, LUMA respectfully informed the Energy Bureau that it was going submit the Root Cause Evaluation Report on or before October 7, 2022.

- 11. As advanced in the Second Updated Report of the April 6th Incident, LUMA hereby submits Exponent's Root Cause Evaluation Report of the April 6th Incident. Specifically, (1) attached hereto as **Exhibit 1** is a Summary of the Investigation and Corrective Actions, and (2) attached hereto as **Exhibit 2** is the Root Cause Evaluation Report. Exponent, the third-party expert contracted by LUMA to carry out the investigation, has prepared the Root Cause Evaluation Report.
- 12. **Exhibit 2** includes two diagrams that are submitted under seal of confidentiality as they constitute Critical Energy Infrastructure Information ("CEII") that garners protection from public disclosures pursuant to federal statutes and regulations, *see e.g.*, 6 U.S.C. §§ 671-674; 18 C.F.R. §388.113 (2020), and the Bureau's Policy on Management of Confidential Information. *See* Energy Bureau's Policy on Management of Confidential Information, CEPR-MI-2016-0009 ("Policy on Management of Confidential Information"), issued on August 31, 20216, as amended by the Resolution dated September 20, 2016. *See* Exhibit 2, on pages 6 and 7 (Figures 3 and 4).
- 13. Under separate cover and expediently, within the next ten days, as allowed by Section A.2 of the Energy Bureau's Policy on Management of Confidential Information, LUMA will submit a memorandum of law in support of this request to file the aforementioned portions of the Root Cause Evaluation Report of the April 6th Incident under seal of confidentiality.

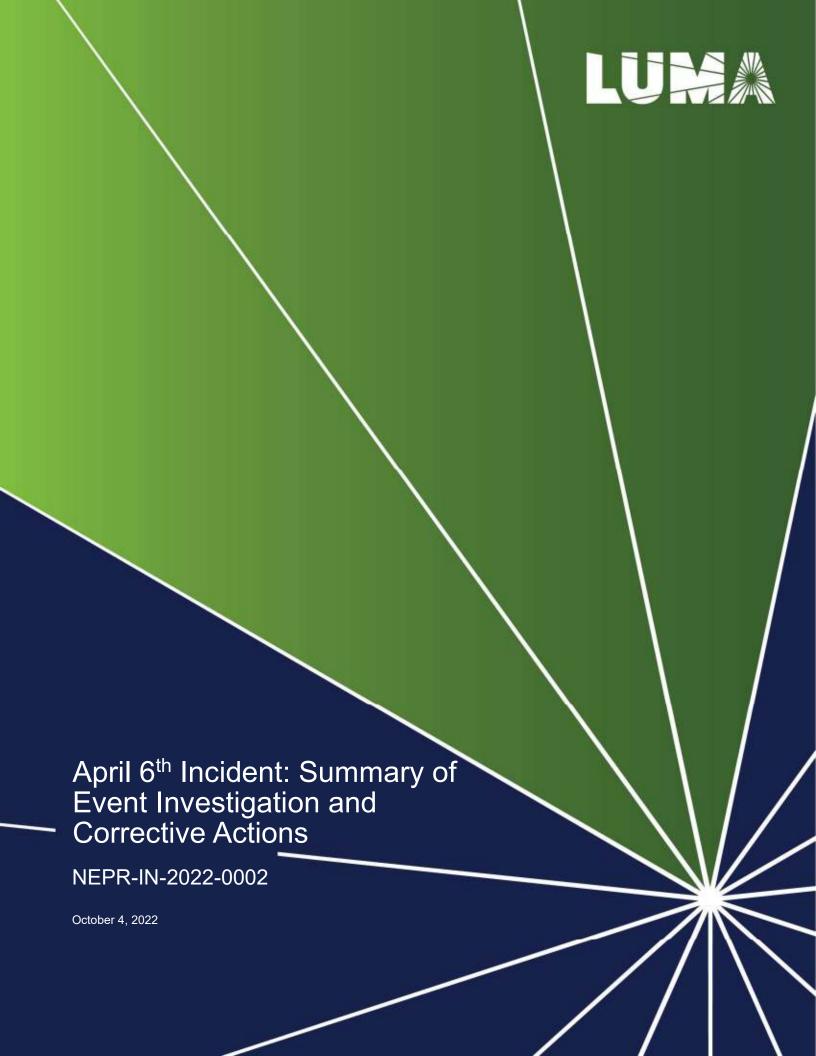
WHEREFORE, LUMA respectfully requests that the Energy Bureau take notice of the aforementioned; accept the Summary of the Investigation and Corrective Actions, submitted publicly as Exhibit 1, and the Root Cause Evaluation Report that is being filed publicly as Exhibit

2; and treat confidentially portions of the Root Cause Evaluation Report that is being filed with this Motion as identified in this Motion.

RESPECTFULLY SUBMITTED.

We hereby certify that we filed this Motion using the electronic filing system of this Energy Bureau and that we will send an electronic copy of this Motion to the attorney for PREPA, Bolaños-Lugo, kbolanos@diazvaz.law.

In San Juan, Puerto Rico, this 4th day of October 2022.


DLA Piper (Puerto Rico) LLC 500 Calle de la Tanca, Suite 401 San Juan, PR 00901-1969 Tel. 787-945-9107/ 9132 Fax 939-697-6147/ 6102

/s/ Margarita Mercado Echegaray
Margarita Mercado Echegaray
RUA NÚM. 16,266
margarita.mercado@us.dlapiper.com

/s/ Iván Garau-González Iván Garau-González RUA NÚM. 20,229 ivan.garau@us.dlapiper.com

Exhibit 1

(Summary of the Investigation and Corrective Actions)

Summary of Event Investigation and Corrective Actions

Event Summary

On the evening of Wednesday, April 6th, 2022, Puerto Rico's electric system suffered an island-wide blackout that left customers without power for several days. The catastrophic failure of a circuit breaker and fault in the 230 kV switchyard at the Costa Sur Steam Plant (SP) led to a subsequent cascading series of outage events which impacted the entire island, and which speaks to the fragility of the electric grid that has suffered from years – if not decades – of operational neglect and lack of maintenance.

We understand that any electrical outage, no matter its magnitude or reason is very frustrating for our customers. A major outage affecting most or all customers and lasting several days is obviously a deeply concerning event. Puerto Rico has a history of these types of large-scale outages in the past – most recently on September 21, 2016, April 18th, 2018, and January 7th, 2020. Each of these large outages, which lasted longer than three days for restoration to be completed, affected more than 500,000 customers. As part of the current investigation, LUMA was determined to understand the root causes of the April 6th, 2022, outage in order to better understand why such outages of the Puerto Rico electrical system happen in order to reduce the risks of similar outages in the future. To the best of our knowledge, this independent investigative process is a fundamental action taken by most utilities following large scale events.

Investigation Process

LUMA, in its role as the operator of the transmission and distribution system, believes it is critical that a transparent and scientific investigatory process is followed to protect the integrity of the analysis and credibility of any conclusions. Multiple steps occurred as part of this investigatory process in order to fully comply with the investigation ordered by the Puerto Rico Energy Bureau in case number NEPR-IN-2022-0002, understand the event in its entirety, and reduce the probability of such events occurring in the future. Given the need to conduct a scientific and rigorous investigation, the forensic analysis and investigation was led by a third-party investigation firm, Exponent, led by Dr. Richard Brown. Dr. Richard Brown is an internationally recognized industry expert in power system reliability including major event investigations and root-cause analysis. Throughout the investigation, Exponent led the outage investigation analysis and provided associated recommendations for corrective actions.

Following the April 6th event, LUMA made clear that it remained committed to providing updates throughout each phase of the investigation and worked with Exponent, PREPA and other generators to gather the necessary evidence. Throughout the investigation, LUMA prepared and filed the following reports with the Energy Bureau:

- April 12, 2022 Preliminary report
- April 14, 2022 Video recordings of the incident
- April 18, 2022 First update report
- May 9, 2022 Second update report, response to requests for information (RFIs) from the PREB
- July 1, 2022 Response to remaining RFIs from the PREB

The complete and thorough investigation included several additional technical analysis reports carried out by Exponent and filed with the Energy Bureau by LUMA including:

- July 18, 2022 Transmission Reliability and Critical Infrastructure Dynamic Analysis
- August 26, 2022 Breaker Failure Forensics Analysis
- September 9, 2022 Power Plant Report

In the final Root Cause Evaluation, Exponent analyzed all of the evidence to the fullest extent possible to explain the root and contributing causes of two key events on April 6:

- 1. the failure of circuit breaker CB-0082 in the Costa Sur 230 kV substation, and
- 2. the inability of the system response to prevent a cascading failure and a blackout of the entire electrical system.

As the Exponent Root Cause Evaluation (RCE) shows, the evaluation of the various event data, asset history, failure analysis, system protection analysis, system stability analysis, and power generation analysis led to the development of key findings and observations upon which a causal analysis was performed. From the causal analysis, two root causes and two contributing causes were identified. To be clear, root causes are those causes that, if removed, the event would have a high probability of not occurring.¹ Contributing causes are those causes that, if they were removed, had some chance of reducing the likelihood of the event.²

Root Cause and Contributing Causes Summary

As a result of its analysis, Exponent determined the following root causes and contributing causes:

Root Cause 1: Ineffective PREPA maintenance management and decision-making led to the Oil-Circuit Breaker (OCB) #0082 breaker being placed into service by PREPA after maintenance in 2020 with contact resistance significantly over the manufacturer's recommended limits. Exponent states that PREPA should not have placed the OCB #0082 back in service with this high level of contact resistance. This resulted in arcing across the contacts in the circuit breaker, heating the oil in the equipment which vaporized the oil, creating high pressure hydrogen that could not be released and resulted in the explosion.

Root Cause 2: Ineffective PREPA operational management and risk decision-making resulting from not having a system stability model to assist in development of load shedding schemes. The protection devices for the most part functioned as intended after the explosion of OCB#0082. When the Costa Sur and Ecoeléctrica plants disconnected, the under-frequency load shed was insufficient to stabilize the system and a blackout occurred. An accurate system stability model that includes generator performance characteristics, helps determine how much load shed is needed to maintain the balance between generation and load and prevent island wide blackouts of the electric system. Despite multiple requests from LUMA, PREPA has not provided access to the generator performance data needed to create the system model.

² Exponent RCE, p. 38.

¹ Exponent RCE, p. 38.

Contributing Cause 1: The synchronization protocols (roles and responsibilities) do not match the current organizational structure. Exponent could not identify PREPA's operating manual for the Costa Sur Steam Plant. PREPA relied on manual controls and individual knowledge to carry out synchronization of the Costa Sur 5 steam unit.

Contributing Cause 2: The state of the electric system was not stable and is often not able to prevent cascading events after the loss of major facilities. Exponent states that "LUMA's takeover of operations included the inheritance of a T&D system that was aged, deteriorated, significantly undermaintained, and had very poor asset and maintenance documentation."³ There is a design flaw in that the system is dependent on Costa Sur substation and the generation from Costa Sur and Ecoeléctrica that pass through the substation. There is an inability of the system to adequately prevent wider failures when there are faults to generation in the south that feeds into Costa Sur.

Corrective Actions Recommended by Exponent

Exponent recommended corrective actions for each cause and assigned LUMA and PREPA as action owners. The operational reality is that LUMA must now take actions to address the factors that contributed to the root cause failures related to PREPA's prior operations. Table 1 below includes the cause, corrective action and action owner as identified by Exponent and the current status of each action provided by LUMA.

³ Exponent RCE, p. 25.

Cause	Corrective Action	Action Owner	Status (Provided by LUMA)
Root Cause 1: Ineffective PREPA maintenance management and decision-making. This circuit breaker should not have been returned to service by PREPA with this level of contact resistance.	Complete maintenance bases for circuit breakers and update maintenance procedu to include limits for pass/fail for inspection and maintenance. Extend maintenance bases to other critical	res	1. LUMA has completed maintenance of 25% of all the Oil Circuit Breakers (OCBs) in the system and 50% of the 230kV OCBs. The testing procedures have been changed to include critical parameters related to OCBs.
	assets and update maintenance procedu accordingly.	res	 This process has been extended to 115kV and 38kV OCBs, leading to updated breaker
	 Evaluate ITT oil circui breakers for similar issues relative to OCE #0082 and perform maintenance and overhauls as needed. 	3	maintenance criteria and procedures. LUMA has completed maintenance on 193 transformers and circuit breakers.
	 Expedite Costa Sur capital program based on recent funding approvals. 	1	3. All of the 230kV breakers' vents have been inspected and cleaned. 109 115kV OCBs and 216 38kV OCBs have also been inspected and cleaned (some 38kV OCBs do not have vents).
			4. Two Costa Sur 230kV OCBs have been replaced with more 230kV breakers placed on order. The plan has been developed to replace all OCBs through the system and this quantity of breakers has been ordered or is in the process of being ordered.

Cause (Corrective Action	Action Owner	Status (Provided by LUMA)
Root Cause 2: Ineffective PREPA operational management and risk decision-making resulting from not having a system stability model to assist in development load shedding schemes. In addition, the lack of transparency of PREPA and response to data requests by LUMA prevent LUMA from developing a model.	Update and revise the system stability model to include the following: Field testing and model development of each of the generation units. This should include the generator, the turbine, the exciter, the power system stabilizer, and the governor models. Review and update the protection system settings in the model, based on actual relays in the field. Extensive testing of the model against potential scenarios and observed system events. Review and update under frequency load shedding schemes	LUMA	In the absence of access to accurate generator data from PREPA, LUMA pursued a two-pronged approach to address similar events in the future: The first approach is a stop-gap measure that involved developing a dynamic system model based on old datasets. LUMA tuned the model based on few prior system events. Although this model is inaccurate and may misrepresent system behavior for future events, it is the best that can be done without access to accurate power plant dynamic data. The second and most robust measure involved developing a testing and model identification plan during Q4 2021, soliciting proposals, and contracting with a wellestablished third-party company to perform the testing. LUMA arranged few meetings with PREPA to discuss the testing process and schedule for the testing but has not received approval and access to visit the power plants and commence the testing process.

Cause	Corrective Action	Action Owner	Status (Provided by LUMA)
Contributing Cause 1: The synchronization protocols (roles and responsibilities) do not match the current organizational structure. Protocol required circuit breaker inspections to be performed prior to synchronization, and there was no evidence that PREPA performed this inspection or requested LUMA to perform this inspection.	Generation synchronization protocols should be reviewed and updated for all PREPA facilities relative to the change in operating structure for the electric system to ensure roles and responsibilities are well understood	PREPA / LUMA	LUMA added synchronizing relays in the switchyard on the breakers associated with the generators to provide an additional protection. In addition, LUMA has reached out to PREPA and is waiting for a continued discussion concerning upgrades to the procedure.
Contributing Cause 2: The state of the electric system was not stable and is often not able to prevent cascading events after the loss of major facilities. Addressing this issue will require a long-term effort by LUMA and transparency from PREPA	Develop a long-term plan for the overall electric system to identify vulnerabilities in system design and operation; and to define future mitigation actions.	LUMA	LUMA has performed system level study utilizing the steady-state model in accordance with CIP-14 standard as industry best practice to identify critical substations that are single points of failure on the Puerto Rico T&D system. These are due to past planning and design practices on the system – proposed mitigations include new substations as well as substation & Transmission line reconfigurations. In addition, LUMA has contracted to build a full system level dynamic model to perform critical system studies to support system stability.

Ongoing Actions and Improvements

Preventing future large-scale outages demands a clear and transparent explanation of the causes that contribute to such events. Based on the root cause analysis of the April 6th event, it is clear that the state of the grid that LUMA inherited remains a significant obstacle to providing the reliable energy our customers expect and deserve. To address this, LUMA is actively working on the improvement(s) needed to mitigate similar incidents from occurring in the future including a series of identified corrective short-and long-term actions. LUMA is also committed to not only being transparent about the causes of such events, but to working together with PREPA and other energy partners to take the necessary steps and actions that will help reduce the risk of an April 6th event from ever happening again.

Exhibit 2

(Root Cause Evaluation Report)

Engineering Sciences

$E^{\chi}ponent^{\circ}$

Costa Sur Outage Event April 6, 2022

Root Cause Evaluation

Costa Sur Outage Event April 6, 2022

Root Cause Evaluation

Prepared for:

DLA Piper LLP (US)

Prepared by:

Exponent Inc. 149 Commonwealth Drive Menlo Park, CA 94025 rbrown@exponent.com

September 22, 2022

© Exponent, Inc.

Contents

			Page
Li	mitat	tions	v
1.	1. Introduction		1
2.	P	roblem Statement	2
3. Event Description		vent Description	3
	3.1	Costa Sur Steam Plant	3
	3.2	Event Summary	7
	3.3	Event Timeline	8
	3.4	Immediate and Interim Corrective Actions	10
4.	P	rior Maintenance Practices and System Deterioration	12
	4.1	Electric System Milestones	12
	4.2	Electric System Assessments	14
	4.3	LUMA Transition	18
5.	0	bservations and Event Analysis	20
	5.1	System Protection Analysis	20
	5.2	Power Generation Assessment	23
	5.3	Circuit Breaker Analysis	26
	5.	3.1 Breaker Asset Information	26
	5.	3.2 Breaker Maintenance History	26
	5.	3.3 Breaker Failure Analysis	27
	5.4	Power System Stability	31
6.	C	ausal Analysis	34
	6.1	Findings and Observations	34
	6.2	Causal Analysis	35
7.	7. Recommended Corrective Actions		42
8.	8. Conclusions		45

9. References 49

Appendix A: Oil Circuit Breaker #0082 Maintenance Records

Figures

Figure 1: Aerial View of Costa Sur Steam Plant Prior to April 6 th Event (switchyard is in foreground of photograph)	4
Figure 2: Costa Sur SP's 230 kV Switchyard (CB 0082 is in top right corner of photograph)	5
Figure 3: Single Line Diagram for Costa Sur Steam Plant Switchyards	6
Figure 4: Single-line Diagram of Costa Sur 230 kV Switchyard	7
Figure 5: Damaged OCB #0082	8
Figure 6: Puerto Rico Electric System History	12
Figure 7: PREPA Maintenance Completion ¹⁴	15
Figure 8: OCB #0082 Maintenance History Timeline	26
Figure 9: Causal Analysis of Failed Circuit Breaker	40
Figure 10: Causal Analysis: System Response	41
Tables	
Table 1: Summary of Protection Performance During April 6th Event	21
Table 2: OCB #0082 Maintenance Results	27
Table 3: B Phase Contact Resistance Measurements	29
Table 4: Recommended Corrective Actions	43

Limitations

At the request of DLA Piper LLP (US), Exponent conducted a root cause evaluation of the Costa Sur outage event on April 6, 2022. The purpose of this evaluation is to determine the root and contributing causes of this event and to define action to prevent recurrence. The results and conclusions of this evaluation are based on the information supplied by LUMA and public records. There was incomplete information received from Puerto Rico Electric Power Authority (PREPA) in response to various data requests, so some critical information is not available to the evaluation team. The opinions and comments formulated during this assessment are based on observations and information available at the time of this assessment.

The findings presented herein are made to a reasonable degree of engineering certainty. If new data becomes available or there are perceived omissions or misstatements in this report regarding any aspect of those conditions, we ask that they be brought to our attention as soon as possible so that we have the opportunity to address them fully.

1. Introduction

At 2042 hours on Wednesday, April 6th, 2022, a fault occurred in the 230 kV switchyard of the Costa Sur Steam Plant (SP). Phase B of Oil-Circuit Breaker (OCB) #0082 suffered a catastrophic failure. The failure affected four adjacent circuit breakers and several portions of the switchyard's lattice structures. Due to the circuit breaker's failure, the 230 kV circuits at Costa Sur SP needed to open to clear the fault, which disconnected EcoEléctrica Generating Facility from the grid and resulted in subsequent outage events that cascaded into a full blackout of Puerto Rico's electrical system. DLA Piper LLP (US) has retained Exponent to perform a root cause analysis of the incident. The objectives of this analysis are to determine the root and contributing causes of this event and define actions to reduce the potential for future events.¹

This root cause analysis is performed with the following conditions:

- LUMA repeatedly requested information and event records from PREPA pertaining to the Costa Sur generating facility synchronization and was provided incomplete information. Therefore, a key limitation in the assessment is that Exponent has no access to the policies and procedures used in the performance of work by PREPA relative to plant operations at the time of the event. These policies and procedures are developed and maintained by PREPA and are needed to insure proper synchronization to the grid. Therefore, reasonable industry practice will be assumed in examining the cause of the incident.
- Exponent is relying on the recently completed analysis of this event relative to system protection performance, circuit breaker failure analysis, power generation assessment, and system stability analysis described in separate reports, which are included as references in this report.

¹ LUMA "Costa Sur Outage Event of 04/06/2022 Progress Report"; NEPR-IN-2022-04, dated July 2022

2. Problem Statement

The problem statement provides the focus of the root cause analysis to ensure that the appropriate issues are addressed. Exponent personnel reviewed the available documentation and defined the problem statement for the root cause analysis. The problem statement developed for performing this root cause analysis is:

On April 6, 2022, at 2042 hours, oil circuit breaker 0082 at the Costa Sur Steam Plant 230kV Switchyard failed while operating to connect and then disconnect the Costa Sur Steam Plant Unit #5 to the grid resulting in the failure of the circuit breaker and adjacent equipment and structures and resulting in outages to 1.5 million customers requiring five days to fully restore all customers.

The problem statement specifically addresses two major issues:

- 1. Determine the cause of the circuit breaker failure
- 2. Determine the cause of the system collapse (resulting from events at a single substation).

3. Event Description

The event description provides a discussion of the Costa Sur Steam Plant and the 230kV switchyard, which contains the failed circuit breaker, a summary of the event, and the event timeline. This information is utilized to identify the key findings that form the starting point of the causal analysis.

3.1 Costa Sur Steam Plant

The Costa Sur Steam Plant (SP) is a network of facilities involving the thermal generation plant and the electrical facilities, including the 230 kV Switchyard and 115/38 kV Switchyards (see Figure 1). Costa Sur's 230 kV switchyard has a breaker and a half configuration with five bays that include four (4) gas circuit breakers and 11 oil circuit breakers from circa 1969-1976. Figure 2 provides an aerial view of the 230 kV Costa Sur Switchyard.

The elevation of the switchyards for the Costa Sur SP has two different levels (Figure 1):

- The 230 kV switchyard's elevation is the highest of the switchyards and is located north
 of the road
- The 38/115 kV switchyard's elevation is the lowest of the switchyards and is located inside the plant's facilities.

The current protection and control panels for both switchyards are in the Control Room building of the power plant (see Figure 1).

The single line diagram for the Costa Sur Steam Plant Switchyards is shown in Figure 3, and the single line diagram for the Costa Sur 230 kV switchyard is shown in Figure 4.

Figure 1: Aerial View of Costa Sur Steam Plant Prior to April 6th Event (switchyard is in foreground of photograph)

Figure 2: Costa Sur SP's 230 kV Switchyard (CB 0082 is in top right corner of photograph)

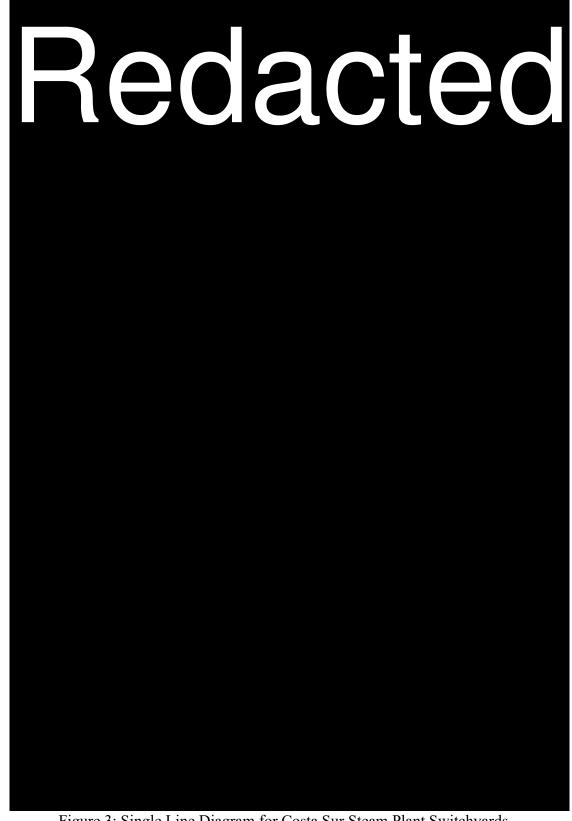


Figure 3: Single Line Diagram for Costa Sur Steam Plant Switchyards

Figure 4: Single-line Diagram of Costa Sur 230 kV Switchyard

3.2 Event Summary

At 2042 hours on Wednesday, April 6th, 2022, a fault occurred in the 230 kV switchyard of the Costa Sur Steam Plant (SP). Phase B of Oil-Circuit Breaker (OCB) #0082 suffered a catastrophic failure (see Figure 5). A detailed description of the event is provided in LUMA's Outage Event Progress Report. A summary of these analyses is described here.

OCB #0082 connects to Costa Sur SP's generation unit #5 to the transmission grid. After synchronizing unit #5 to the grid, the circuit breaker began to experience internal arcing, resulting in the generation protection system sending a trip command to OCB #0082. During the opening, phase B tank of the OCB # experienced a catastrophic failure followed by an explosion and flying debris that damaged bus #6 (see Figure 4 for reference). The failure affected four

adjacent circuit breakers and several portions of the substation's lattice structures. Due to the circuit breaker's failure, the 230 kV circuits at Costa Sur SP needed to open to clear the fault, which disconnected EcoEléctrica from the grid and resulted in subsequent outage events that cascaded into a full blackout of Puerto Rico's electrical system. Under-frequency load shedding occurred but was insufficient to prevent total system collapse. By 2100 hours on Saturday, April 9th, 83.5% of customers impacted by this event had been restored, and by Sunday, April 10th at 0300 hours, 99% of customers impacted had been restored.

Figure 5: Damaged OCB #0082

3.3 Event Timeline

The event scenario is determined based on an evaluation of the event information from the various operating and monitoring sources. The event scenario is summarized from the analysis

in the event report¹, power generation assessment report², and circuit breaker failure analysis³ reports. More details of the event scenario are found in those references. Based on an assessment of this data, the following event scenario was determined:

- Costa Sur's generator unit #5 was connected to the transmission system by closing OCB #0082 Phase B.
- Approximately five seconds later, unit #5's protection system operated due to an unknown event. This sent a command to OCB #0082 to open.⁴
- While opening, a fault occurred within OCB #0082, causing a failure.
- This failure caused conductive gases and particles to engulf the surrounding area, resulting in multiple faults on the 230 kV system at Costa Sur.
- The breaker failure relay correctly isolated the fault as designed.
- These subsequent 230 kV line faults were correctly isolated from the system by line-fault protection at remote substations.
- The failure of the circuit breaker and the resulting subsequent faults caused the generators at Costa Sur and EcoEléctrica to be disconnected from the power system. This resulted in the removal of approximately 800 MW generation capacity from the system, corresponding to an approximate reduction of the system from 2,300 MW to 1,500 MW.
- The sudden generation reduction resulted in the remaining generators decelerating.

² Puerto Rico Outage Investigation: Costa Sur Power Plant"; Exponent Report, dated September 9, 2022

³ "Failure Analysis of Costa Sur Oil Circuit Breaker 082", Exponent Report, dated August 25, 2022

⁴ LUMA has requested operating information on the initiating relay that issued the trip signal to the breaker from PREPA, but has not received any information from these requests. See Transmittal # LUMA-PREP-T-00267 "Response to PREPA's Letter Regarding Costa Sur OCB #0082 Event Investigation"; dated June 3, 2022

• The generation deceleration triggered under frequency load shedding, but this load shedding was not sufficient to prevent the Island from blacking out.

Based on the event timeline, the major findings related to this event are:

- 1. There was a trip signal sent to open OCB #0082 from an unknown source from Unit #5⁵.
- 2. There was an unexpected failure of OCB #0082.
- 3. The protection system breaker failure relays performed as intended to clear the faults after the explosion. The performance of the bus differential protection scheme was limited by a faulty lock-out relay which prevented a signal to OCB #0082, and the bus differential protection did not clear the fault.
- 4. The overall system could not handle the failure at the Costa Sur 230V switchyard, the subsequent loss of load, and the inability of the under-frequency load shedding scheme to prevent system collapse.

3.4 Immediate and Interim Corrective Actions

After this event, LUMA took the following immediate corrective actions in preparation for restoring the 230 kV bus #6 and replacing damaged circuit breakers #0074 and #0082⁶:

• Electrical

- Performed high-voltage auxiliary switch cleaning and adjustments on switches #51120A, #50320A, and #0019.
- o Performed maintenance on OCBs #51120 and #50220.
- Re-energized the undamaged portion of Bus #6 after testing, commissioning, and connecting to PTs and OCB #50220.

⁵ Repeated requests for this information was requested from PREPA, but information was never obtained.

⁶ LUMA "Costa Sur Outage Event of 04/06/2022 Progress Report"; NEPR-IN-2022-04, dated July 2022

- Current transformers tested on high-voltage circuit breakers #51120, #50220, and #50320.
- The protective relays associated with affected breakers OCB #0082 and #0074 and bus differential were tested for proper operation.
- o Removed high-voltage auxiliary switches #0082A and #0074A.
- o Installed high-voltage PT and secondary PT disconnect switch and wire pulls.
- o Replaced damaged portion of Bus #6 and wiring of protection in Control Room.
- o Cable pulled for SCADA panel.

• Civil

- Removed contaminated soil.
- Replaced crushed stone.
- o Trench completed for PT secondary conduit.
- o Transferred extra material to material trailer.

4. Prior Maintenance Practices and System Deterioration

The background information provides a summary of the recent history and the condition of the electric system in Puerto Rico and the transition to LUMA's operation of the electric transmission and distribution system. While LUMA was aware of many maintenance and equipment condition issues, the severity of the deterioration of the maintenance and inspection program was not known as will be discussed below. This historical discussion is provided to indicate the state of the system prior to LUMA operations and to its effect on the incident.

4.1 Electric System Milestones

The electric system in Puerto Rico was operated by PREPA until the turnover of operations to LUMA in June 2021. Key milestones in the recent history of the system are shown in Figure 6.

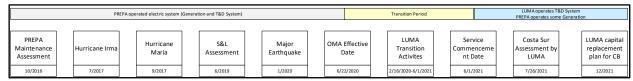


Figure 6: Puerto Rico Electric System History

The key milestone events of interest prior to the LUMA transition are:

- PREPA prepared an assessment of their maintenance program and staffing limitations in 2016 that indicated a significant and critical decline in their maintenance program.⁷
- The Island was subject to back-to-back hurricanes in 2017 that caused severe damage to the electric system infrastructure as well as all infrastructure systems (water, roads, buildings, etc.).

⁷ PREPA Letter "Análisis Estadístico y Proyectado de la Conservación de Equipos Eléctricos de la Subdivisión de Conservación Eléctrica"; dated October 19, 2016.

- An independent assessment of the electric system was performed in 2019 to assess
 the system condition after the hurricanes and to inform electric system recovery
 plans.⁸
- A major earthquake occurred in 2020, which further damaged the electric infrastructure.
- The Puerto Rico Public-Private Partnerships Authority made a decision to issue a request for bid for an independent entity to take over operations of the electric transmission and distribution system. LUMA was selected as the operator and a transition period of approximately one year began in mid-2020 with the Operation and Maintenance Agreement (OMA).
- LUMA began operations on June 1, 2021.
- LUMA completed its initial assessment of the major electric system substations to determine condition and needs. The Costa Sur assessment was completed in July 2021, shortly after the commencement of operations by LUMA.¹⁰
- LUMA also took over planned capital work that was proposed by PREPA as recovery from the hurricanes. There was a project proposed for the replacement of several of the circuit breakers at Costa Sur¹¹ that was submitted to PREB in February 2021. This project was reevaluated and expanded by LUMA to include all the older

^{8 &}quot;Independent Engineering Report PREPA Transmission and Distribution System" prepared by Sargent & Lundy, Report No. SL-014468.TD, dated June 2019

⁹ "Puerto Rico Transmission and Distribution System Operation and Maintenance Agreement" between PREPA, LUMA and the Puerto Rico Public-Private Partnerships Authority (Administrator); dated June 22, 2020

¹⁰ LUMA "Substation Assessment Costa Sur"; dated July 26, 2021

¹¹ The proposal was for the replacement of four oil circuit breakers and three gas circuit breakers.

¹² DR-4339-PR Public Assistance "Project Scope of Work with Cost Estimates Submitted to COR and FEMA; Substations – Costa Sur SP TC – Equipment Repair and Replacement 169896, dated February 1, 2021.

breakers when it was also determined that the 115kV switchyard was in a flood zone. This project has been recently approved for funding by FEMA.¹³

These are key historical milestones leading up to the April 6, 2022, outage event. A description of the electric system condition leading up to these events is provided below.

4.2 Electric System Assessments

Electric systems are subject to various inspection and maintenance programs to ensure that the assets and systems are safe and reliable. In 2016 PREPA prepared an internal communication that discussed the current state of the maintenance program. This information, which indicated a severe decline in maintenance activity, was not provided to LUMA during the transition.¹⁴ maintenance and inspection activities were greatly reduced. The electric system has been significantly impacted in the past several years by reduced preventive maintenance and by major external events (hurricanes and earthquakes).

In 2016, PREPA indicated that the status of their electric system inspection and maintenance program was deteriorating.¹⁴ This information indicated that there were issues with both the maintenance program and the ability of PREPA to retain and recruit key personnel to manage the inspection and maintenance program effectively. PREPA indicated the following completion level of maintenance tasks, as shown in Figure 7. As indicated by the results in Figure 7, the effective maintenance completion declined continuously from 2008 to 2016 to the extent that only 24% of maintenance was being completed within its required time period. The impact of this condition is that asset condition deteriorates without the appropriate attention and leaves the system in a vulnerable state relative to equipment condition and reliability.

¹³ Department of Homeland Security Federal Emergency Management Agency, Project 169896 Approval; dated July 28, 2022.

¹⁴ PREPA Letter "Análisis Estadístico y Proyectado de la Conservación de Equipos Eléctricos de la Subdivisión de Conservación Eléctrica"; dated October 19, 2016.

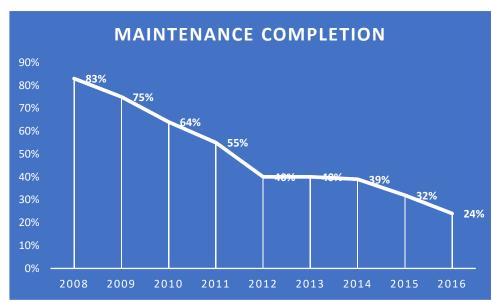


Figure 7: PREPA Maintenance Completion¹⁴

With the deteriorated maintenance conditions, two major hurricanes in the summer of 2017 impacted Puerto Rico and severely impacted the electric system. The entire Island was without electric power for a significant period of time (in addition to other negative impacts of the storms). As reported in a June 2019 independent report, ¹⁵

"On September 6, 2017, the island of Puerto Rico was struck by Category 5 Hurricane Irma; two weeks later, it was hit by later by Category 4 Hurricane Maria. The 150+ miles per hour winds and heavy rains of Hurricane Maria caused extensive damage to Puerto Rico's infrastructure, including the electric grid. Damage from Hurricane Maria resulted in the entire island going into a black-out condition, with complete de-energization of the T&D system."

Additionally, the independent report indicated the following relative to the substations on the system:

"As reported from PREPA, as of March 6, 2019, 332 of 342 distribution substations had been reenergized and 54 of 56 TCs had been re-energized. As with T&D elements, even though the system has been successfully restored to serve the vast majority of PREPA customers, it is not

_

¹⁵ "Independent Engineering Report PREPA Transmission and Distribution System" prepared by Sargent & Lundy, Report No. SL-014468.TD, dated June 2019

clear what level of reliability can be expected from the substations and TCs. Many sites experienced significant flooding which can degrade critical equipment. Equipment, such as transformers and circuit breakers and the associated control panels are sensitive to moisture intrusion, especially during periods of de-energization, which can lead to lower reliability. Once the emergency restoration effort has been completed, much of the substations and TCs will need to be revisited by crews in order to evaluate and make the required repairs to bring them up to industry standard levels of reliability."

Therefore, in 2019, the electric facilities were in operation, but required significant maintenance and potential replacement.

In January of 2020, a major earthquake struck the Island, and again electric power was lost for a significant period of time. While not sustaining the damage from the hurricanes, the electric infrastructure was further impacted and required remediation to restore customers to service.

The independent report provided the most current review of equipment and substation conditions prior to the LUMA transition. Key conclusions and excerpts¹⁵ from this assessment are included below (emphasis added):

- "Overall, most substations and TCs were operating and in decent condition. However, overall maintenance was a concern. While newer equipment was in good condition, older equipment exhibited its age indicative of inadequate maintenance practices. The condition of the wiring and lack of documentation represents a significant challenge to the stations' reliable performance."
- "PREPA indicates that due to lack of labor resources, they do not generally perform scheduled or planned maintenance of the TCs, substations, or T&D systems. However, scheduled and planned maintenance is generally performed on large power transformers, oil and gas circuit breakers, station batteries, and relays on a time basis."
- "In general, the substations, TCs, and T&D lines that we inspected are operational. The majority of the equipment observed is 30 years old or more, and maintenance of the

equipment has been minimal due to limited resources and budget. PREPA's focus has been to address failed or damaged equipment as customers lose power. The lack of maintenance has contributed to continued reduced system reliability, increased outages, and safety concerns."

- "These TCs and substations are critical for system reliability. They allow for the integration of transmission voltage levels, and step power down to lower voltages at which customers can be served. They use breakers, switchgear, and relays to provide for the protection and control of the transmission lines and transformers, which is critical for reliable and safe operation. The majority of the relaying on PREPA's system is of the older, electro-mechanical type, and approximately 38% of the high voltage circuit breakers on the system are older oil-type circuit breakers."
- "As these systems age failures will become increasingly frequent, leading to crews spending more time in restoring and performing corrective maintenance, rather than focusing on preventative maintenance that increases reliability. Older sites also pose additional challenges as drawings may be outdated or inaccurate, and years of emergency repairs can lead to non-standard installations that are more difficult to troubleshoot."
- "... also recommends completing a full grid study, including load flow and dynamic stability studies, to quantify the transmission constraints on the system. Once the actual constraints are identified, PREPA will likely not only be able to dispatch their generators in a more efficient manner, but they could also develop a targeted plan for future grid improvements for the T&D Roadmap."

The major observation from our assessment of the condition in the independent report is that the electric system remains fragile from years of lack of maintenance and inspections and damage from external events. These conditions already existed when LUMA executed the Operating and Maintenance Agreement (OMA) in June 2020.

4.3 LUMA Transition

LUMA signed the OMA¹⁶ on June 22, 2020, which began a period of transition from PREPA to LUMA relative to taking over operations of the electric transmission and distribution system. The purpose of this document was to define the scope of the operating and maintenance services¹⁷, the front-end transition services¹⁸, and the back-end transition services¹⁹. After June 22, evaluate various documents, operating procedures, staffing requirements, record management, and other services. The result of this transition period was the beginning of service commencement by LUMA on June 1, 2021. After the service commencement date, LUMA took over the operations and maintenance activities for the electric transmission and distribution assets, including lines and substations.

LUMA indicated that their first major tasks relative to substations were to:

- Initiate the development of a computerized asset and maintenance database. The
 existing databases from PREPA were not consistent with current industry practices, and
 most of the prior asset and maintenance information was only available in paper records
 located at the various work centers. LUMA indicated that a significant effort was
 required to retrieve paper records to populate the computerized database.
- Perform visual inspections of facilities to determine where immediate work was required. LUMA performed walk-throughs and visual inspections of its large

¹⁶ "Puerto Rico Transmission and Distribution System Operation and Maintenance Agreement" between PREPA, LUMA and the Puerto Rico Public-Private Partnerships Authority (Administrator); dated June 22, 2020

Per OMA, O&M services are generally defined as "Operator shall (i) provide management, operation maintenance, repair, restoration and replacement and other related services for the T&D System, in each case that are customary and appropriate for a utility transmission and distribution system service provider, including the services set forth in this Article 5 (O&M Services) (excluding the GenCo Shared Services) and Annex I (Scope of Services), and (ii) establish policies, programs and procedures with respect thereto (all such services, the "O&M Services"), in each case, in accordance with the Contract Standards.

Per OMA, front-end services are generally defined as "services provided by Management Company under this Agreement prior to the Service Commencement Date in order to complete the transition and handover to Operator of the operation, management and other rights and responsibilities with respect to the T&D System."

¹⁹ Per OMA, back-end transition services are generally defined as "services provided under this Agreement in order to complete the transition and handover of the O&M Services."

substations and documented these inspections. The Costa Sur 230kV switchyard was inspected in July 2021.²⁰ The report on OCB #0082 indicated it was close to its expected service life and showed signs of aging. This condition estimate was similar to other equipment at the 230kV switchyard.

- Evaluate major capital projects that were proposed by PREPA and continue or expand these projects based on assessments. As indicated earlier, a major capital program was proposed for Costa Sur 230kV station, and this capital project has been recently approved.¹³ This capital program includes the replacement for OCB #0082. However, this program was identified earlier, but funding was not available for action prior to the April 6, 2022, outage event.
- Focused efforts on restoring equipment that was not operational as the primary initial focus, which diverted resources from the ongoing maintenance efforts.

A key observation is that LUMA's takeover of operations included the inheritance of a T&D system that was aged, deteriorated, significantly undermaintained, and had very poor asset and maintenance documentation. The T&D system would require significant effort to bring the assets to good health and high reliability.

²⁰ LUMA "Substation Assessment Costa Sur"; dated July 26, 2021

5. Observations and Event Analysis

This section details the various data collection and analysis activities associated with this root cause evaluation. The key analysis aspects of the assessment include:

- Protection analysis and performance during the event
- Evaluation of Costa Sur Steam Plant Unit #5 synchronization process
- Failure analysis of circuit breakers
- System analysis and operations related to under-frequency load shedding

This information will provide the basis for analysis of the event and the determination of findings to support the causal analysis.

5.1 System Protection Analysis

The system protection analysis is documented in a separate report.¹ The detailed analysis of the event and the protection response is described in the report and is summarized here. The analysis of this complex system event was impacted due to missing fault recorder data at the time of the event.

Table 1 provides an overview of the performance of all fault-protection elements during this event. The breaker failure relays operated properly to clear faults in the system after the explosion. There were a few elements that did not perform as planned. However, these elements likely had a limited impact on the overall event. A discussion of the performance of these protection elements follows.

Table 1: Summary of Protection Performance During April 6th Event

Tuest It Summing erries	tection i cirormanee Baring	5 TIPIN O EVEN	
Event	Protection Element That Operated	Performed Correctly?	Comment
Initiating event	Generator protection	Unknown	No data received from PREPA
Initial fault on OCB #0082	Unit #5 differential	Yes	
Initial fault on OCB #0082	Bus #6 differential	Partial	One defect LOR
Initial fault on OCB #0082	Line 50200 Costa Sur terminal	No	No operation expected; LOP missing
Initial fault on OCB #0082	Line 50400 Costa Sur terminal	No	No operation expected; LOP missing
Initial fault on OCB #0082	Line 50100 both terminals	Yes	
Initial fault on OCB #0082	Breaker failure	Yes	
Subsequent fault on 50200 Manatí	Line 50200 Manatí terminal	Yes	
Subsequent fault on 50300 Aguirre	Line 50300 Aguirre terminal	Acceptable	67G operation
Subsequent fault on 50300 Aguirre	Line 51300 Ponce terminal	No	67G operation
Subsequent fault on 50400 Mayagüez	Line 50400 Mayagüez terminal	Yes	
Subsequent fault on 51200 Cambalache	Line 51200 both terminals	Yes	

LOR = Lock Out Relay; LOP = Loss of Potential

The initiating event caused the generator protection to issue a trip command to OCB #0082. At this time, it can be assumed that OCB #0082 was already closed for several seconds. What the cause of this initiating event was and why the generator protection issued a trip command are still under investigation as PREPA has not provided any insight into the trip command that opened the OCB.

When OCB #0082 opened could not be confirmed even though the SCADA alarm announced the circuit breaker was open 114 milliseconds after the trip command was issued. This is the

moment where the B-ground faults begin. The unit #5 differential protection correctly issued a trip for this fault and started the breaker failure's timer. The high-impedance, bus-differential protection also issued a trip for this fault, but due to a defective lock-out relay,²¹ only some of the circuit breakers were tripped. The fact, however, that the measuring coil of the B-phase was burned confirms that the lockout relay (LOR) that gives the alarm to SCADA, and that shortens the measurement coil to prevent the burnout was not working during this fault. One defective LOR was confirmed by a field test. The fault was correctly cleared by the breaker failure relay after 360 milliseconds.

Two cycles before the fault were cleared, the fault expanded into an AB-ground fault. At this time, the PT signals were lost. The line relaying for the Manatí line 50200 and Mayagüez line 50400 issued an incorrect Zone 1 operation for this reverse fault at this moment. Nonetheless, the operation from the Manatí line relay did not have any impact on the event, as the breaker failure operation was already in the opening sequence of these circuit breakers. The functionality was reviewed with the relays' manufacturer, Schweitzer Engineering Laboratories (SEL), as the expected response of blocking Zone 1 by a loss of potential logic was not working. SEL explained that the missing loss of potential signal in both line relays was due to the firmware of this relay (R112) having a logic/timing error that caused this malfunction. To mitigate this problem, firmware R113 must be used. The impact of the incorrect operation from the Mayagüez terminal can also be ignored since the Mayagüez line was tripped late based on a subsequent fault.

All subsequent faults on different lines were cleared by the associated protection correctly, apart from the fault on Aguirre line 50300. The line relaying at the Aguirre line terminal detected the subsequent fault and tripped the fault with an instantaneous over-current element (67G). Concurrently, the line relaying at the Ponce line terminal detected the same fault and also operated with an instantaneous over-current element (67G). The setting philosophy was reviewed and found to be correct. However, the settings of elements cannot consider this type of multiple contingency event. The operation on the Aguirre terminal is acceptable as the fault was indeed on the Aguirre line, but the operation from the Ponce terminal is undesirable. It should

²¹ Regular maintenance and testing of the relay had the potential to identify and prevent this defect.

be noted that the system is already in an abnormal condition as the Costa Sur bus #6 is isolated from the 230 kV system and the Mayagüez line tripped. For the development of the 67G pick-up settings, only a n-1 or n-2 contingency is considered.

5.2 Power Generation Assessment

An attempt has been made to understand and analyze the circumstances associated with the synchronization of the Costa Sur Unit 5 turbine-generator unit just prior to the failure of OCB #0082 on April 6, 2022, and the Unit 5 synchronization on April 22, 2022. This assessment is documented in the Exponent Power Generation Assessment Report, which provides a detailed assessment. A summary of the power generation assessment is provided here.

At the time of this incident, the Unit 5 generator was being synchronized to the 230 kV grid. After investigation, it appears that the synchronization occurred for about five seconds.²⁴ At this point, an electrical anomaly was detected, followed by the Unit 5 protection system issuing a trip command to Breaker #0082. Breaker #0082 catastrophically failed while attempting to open.

There are reported discrepancies associated with the synchronizing activities at the time the Unit 5 generator was being connected to the 230 kV grid. Because the PREPA plant operator reported the breaker status indicator lights did not show a change of breaker state (open-to-close) and reported that the synchroscope hand was still moving, he thought the unit had not synchronized to the system when, in fact, it had. The generator began picking up load; approximately 5 seconds later, the unit tripped offline. Review of the preliminary events and alarms from Mark VI shows that the electrical anomaly occurred about 5 seconds after synchronization, and this started a sequence that led to the breaker failing. This also initiated a Breaker #0082 trip by the generator protection group. The transient fault recorder data could

²² "Puerto Rico Outage Investigation: Costa Sur Power Plant"; Exponent Report, dated September 9, 2022

²³ This effort has been hampered by the lack of information provided by the PREPA plant personnel. This report has identified the need for detailed information pertaining to startup procedures, unit protection (mechanical and electrical), and unit monitoring and unit control.

²⁴ Oscillography data from the Manati substation showed no anomalies from the time of synchronization for about five seconds. At this point a waveform anomaly occurred and persisted for about 200 ms until the generator unit protection issued an open command to Breaker #0082.

have provided valuable insight during these first 5 seconds, but was offline at the time of the incident. Specifically, the data from the transient fault recorder would have provided pre-fault and fault current and voltage measurements at the location of the fault. This would have provided valuable information about the performance of the generator.

On April 21, 2022, several problems were revealed when Unit 5 was subsequently synchronized to the 230 kV grid. This was the first time after the April 6 event, and had to use breaker #0012 to connect to Bus #5 (breaker 0084 was still OOS). Bus #6 was out of service as a result of the damage incurred during the breaker 0082 failure incident.

In the steps leading up to unit synchronization (on 6/21/22), sequential trip simulations were conducted by PREPA. During these pre-synchronization tests, PREPA's personnel jumpered the valve trips. This allows the 20X sequential trip circuit to be activated without disturbing the valve circuit. Under these circumstances, a defective limit switch can go undetected.

It was determined that during this Incident a malfunctioning limit switch prevented the sequential trip circuit from initiating a unit trip, and elements in the trip circuit could not be asserted. Shortly after the unit was synchronized to the system, arcing was visually observed on the B phase of the unit 5's #0019 motor-operated disconnect (MOD). PREPA personnel had to intervene and manually trip the #0012-circuit breaker. It is suspected that the condition found with MOD #0019, B-phase contacts, might have existed prior to the April 6 event. It is further suspected that the defective limit switch problem may also have existed prior to the April 6 event. The defective limit switch would have prevented several trip criteria from initiating a sequential unit trip.

Additionally, the operating procedures that PREPA utilized for synchronization of the generators to the grid have not been updated for the current operations with LUMA.²⁵ There are requirements in this procedure requiring PREPA, as the generation operator, to take specific actions to ensure that OCB #0082 is ready for the synchronization process. These actions

-

²⁵ PREPA Operating Procedure Number 401-C.S.5&6, dated September 1, 1977.

include verification by the engineer of the shift (plant operator) prior to the operation of the following elements on the circuit breaker:

- DC current circuit
- AC circuit for air compressor power
- Compressed air system
- Oil level
- Manual discs
- Key locking
- No mechanical earths.

There was no evidence uncovered by the assessment team that these checks were performed by PREPA or that LUMA was asked to perform these checks.

During this investigation, a number of discrepancies, issues, and questions have arisen, the analyses of, and answers to which remain unresolved due to a lack of transparent communications and lack of sharing of relevant information by PREPA to LUMA. LUMA has repeatedly requested information from PREPA, and PREPA has been nonresponsive to many of these requests. Many of the open questions from this report about the performance of the generators could have been answered had PREPA been more responsive. In addition, additional lessons learned could have been gleaned from this event. For example, PREPA did not provide the protection function that sent the trip signal to the circuit breaker. This and the lack of a functional transient fault recorder very much limited any data available from the plant during the first few seconds of this event.

5.3 Circuit Breaker Analysis

5.3.1 Breaker Asset Information

OCB-82 is a 230 kV oil circuit breaker that was manufactured by ITE in 1970. ITE was later sold to ABB, who later sold it to Hitachi Energy. The only requirements for operation and maintenance were included in the original instruction manual.²⁶

5.3.2 Breaker Maintenance History

Maintenance recommendations begin on Page 8 of the Instruction Manual²⁶. This included preinspection safety checks, an external and internal inspections. The circuit breakers are on a four-year maintenance cycle. For the specific breaker that failed, OCB #0082, the maintenance history is summarized in Figure 8.

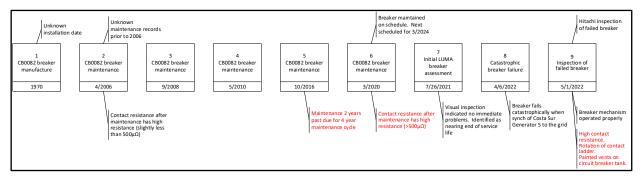


Figure 8: OCB #0082 Maintenance History Timeline

The circuit breaker maintenance was documented for 2006, 2010, 2016, and 2020. The next scheduled maintenance would be 2024. All of the breaker maintenance was performed by PREPA. Key findings from the review of the maintenance data are:

• There was overdue maintenance in 2016 as this passed the four-year inspection interval.

²⁶ ITE Imperial Corporation: "Instruction Manual for Power Circuit Breakers Type 230kV Transmission Class"; Issue C.

• The maintenance results for contact resistance were recorded after maintenance, as shown in Table 2.

Table 2: OCB #0082 Maintenance Results

Maintenance	Contact Resistance after Maintenance (µ-ohms)		
Year	A Phase	B Phase	C Phase
2006^{27}	454	490	472
2010^{28}	432	463	470
2016 ²⁹	487	274	488
2020^{30}	556	956	608

Based on discussions with the Hitachi representative, contact resistance after maintenance is ideally less than 300 μ -ohms, but should never be more than 500 μ -ohms. Therefore, this circuit breaker has been marginal for some time, and clearly, in 2020, PREPA should not have placed this breaker back into service without a breaker overhaul to address the high contact resistance.

A key observation is that the breaker was inspected in 2020, which would require its next maintenance in 2024. LUMA's visual inspection in 2021 as part of its transition would not have identified issues related to contact resistance.

5.3.3 Breaker Failure Analysis

The circuit breaker failure analysis is described in a separate report.³¹ The summary of the failure analysis conclusions is provided here.

It is impossible to know precisely what happened in this event due to two factors. First, Tank B of the circuit breaker OCB #0082 failed catastrophically, destroying all internal tank evidence that would otherwise have provided valuable information (e.g., internal tank arcing, and contact

 $^{^{27}}$ OCB 0082 MAINTENANCE AND INSPECTION REPORT SEPTEMBER 2008

 $^{^{28}}$ OCB 0082 MAINTENANCE AND INSPECTION REPORT_MAY 2010

²⁹ OCB 0082 MAINTENANCE AND INSPECTION REPORT OCTOBER 2016

³⁰ OCB 0082 MAINTENANCE AND INSPECTION REPORT MARCH 2020

³¹ "Failure Analysis of Costa Sur Oil Circuit Breaker 082", Exponent Report, dated August 25, 2022

condition). Second, the digital fault recorder was inoperable at the time of the Incident, making waveform data that would provide fault current information unavailable.

Although it is impossible to know precisely what happened in this event, there is a likely scenario that is consistent with all of the facts in the record. This likely scenario consists of the following sequence of events.

- 1. Prior to the synchronization of Unit 5, the contact resistance in Tank B of OCB #0082 (Tank B) was too high.
- 2. When OCB #0082 was closed to connect Unit 5, the synchronization was successful.
- 3. After synchronization, the current flow through the contacts of Tank B resulted in excessive heating due to the high contact resistance.
- 4. The excessive heating of the Tank B contacts results in thermal runaway³², causing extreme temperatures in the contacts and vaporization of the surrounding oil, and the rapid buildup of hydrogen gas.
- 5. About 5 seconds after synchronization, vaporization of the internal tank oil around the Tank B contact reduces the dielectric strength from the Tank B contacts to grounded components within the tank, resulting in arcing from Phase B to ground.
- 6. The arcing from B Phase to ground results in:
 - a. A ground potential rise in the switchyard grounding grid. This ground potential rise results in arcing at several locations in-and-around the Costa Sur switchyard.
 - b. The combination of high Phase B impedance and arcing results in waveform distortion.
- 7. After about 213 milliseconds of distorted waveforms, a trip command is sent to OCB #0082 by the Unit 5 generator protection system.

³² The resistance of metallic conductors increases with temperature. Since heat generation is proportional to resistance, a conductor with excessive current can cause a significant increase in conductor temperature. This increase in conductor temperature will further increase conductor resistance, which further increases heat generation. This situation can create a positive feedback loop where conductor temperatures continue to increase until the conductor melts, referred to as thermal runaway.

- 8. The operating mechanism of OCB #0082 functioned properly during the trip operation. However, the compromised gas within OCB #0082 resulted in sustained arcing across the opening contacts, resulting in further hydrogen gas buildup.
- 9. The hydrogen gas generated by the internal arcing could not be vented since the vent filters had been painted over.
- 10. After about 700 milliseconds of internal arcing, Tank B catastrophically fails due to the ignition of combustible gases.

There are no guidelines in the Instruction Manual with regard to contact resistance. Interviews with former PREPA maintenance personnel indicate a maximum acceptable contact resistance of 500 $\mu\Omega$. The Hitachi Energy report (not the instruction manual) states the following:³³

"Contact resistance after maintenance should ideally be less than $300\mu\Omega$ but never more than $500\mu\Omega$."

Contact resistance measurements were made during scheduled PREPA maintenance activities in both 2016 and 2020, consistent with the 4-year PREPA maintenance cycle. Results are shown in Table 3 (data taken from scanned paper maintenance records (see Appendix A)).

Table 3: B Phase Contact Resistance Measurements

Voor	B Phase Contact Resistance ($\mu\Omega$)		
Year	Before Maintenance	After Maintenance	
2016	2047	274	
2020	2112	956	

As can be seen, OCB-082 was put back in service, by PREPA, after 2020 maintenance with a B Phase contact resistance of 956 $\mu\Omega$. This is over three times the 300 $\mu\Omega$ recommenced value by Hitachi Energy and almost twice the internal PREPA criterion of 500 $\mu\Omega$. Furthermore, the B Phase contact resistance had a history of increasing to very high levels between maintenance cycles: 2047 $\mu\Omega$ in 2016 and 2112 $\mu\Omega$ in 2020.

³³ Hitachi Energy, Luma OCB Circuit Breaker Failure: Field Service Inspection Report, 2022-06-27, p14.

There is no question that the B Phase contact resistance of OCB-82 was unacceptably high at the time of the Incident. Based on contact resistance measurements alone, PREPA should never have put OCB-82 back in service after the 2020 maintenance was performed without reducing the high contact resistance to recommended values.

Additionally, a post-incident site inspection of the Costa Sur 230 kV switchyard found that some circuit breaker tanks of similar vintage to OCB-82 had their tank breathers painted over.³⁴ Tank breathers exist to vent excess gas accumulation and painting them over can result in an accumulation of combustible gases within the tank. The Hitachi report concludes the following:³⁵

The catastrophic failure of the tank can only happen if the hydrogen pressure builds up fast enough to cause the arcing inside the breaker from the fault to ignite the hydrogen gas causing the oil tank to fail. This scenario is consistent with the painted-over vents preventing the release of hydrogen from the tank.

Tank B ruptured in a violent explosion, resulting in a complete separation along the vertical seam weld. This is consistent with hydrogen gas buildup within the tank, which is then ignited by internal arcing.

If both of the OCB-82 tank breathers were painted over, internal arcing would have resulted in hydrogen gas generation that was not able to be vented out of the tank. However, the generation of hydrogen gases occurs rapidly during a long-duration arcing event and may not have time to escape during this time. This hydrogen gas would have been ignited when the contacts attempted to open, resulting in a high-temperature electrical arc within the tank. This scenario is consistent with the damage that occurred to the Phase B tank.

2203718.000 - 5093

30

³⁴ "Failure Analysis of Costa Sur Oil Circuit Breaker 082", Exponent Report, dated August 25, 2022

³⁵ Hitachi Energy, Luma OCB Circuit Breaker Failure: Field Service Inspection Report, 2022-06-27, p14.

5.4 Power System Stability

The power system stability assessment is described in the LUMA Transmission Reliability Standards and Critical Infrastructure Report.³⁶ A summary of the results is included here. This report is focused on the event analysis based on the dynamic system stability model. Dynamic stability models have been used for decades throughout the electric power industry. They are used to assess the response of the power system to various events, including faults and equipment outages. Dynamic models are routinely utilized by utilities and regional operators in transmission planning, reliability compliance assessments (e.g., NERC), reconstruction of event sequence, renewable interconnection studies, tuning of generator controls or transmission equipment, and the design of mitigations to prevent load interruptions and cascading outages.

Dynamic stability models include a detailed representation of the time response of each component in the power system. The model components include:

- Turbine-generators models and associated protection and controls (e.g., relays, excitation system, and governor),
- Inverters and associated control of renewable resources (e.g., wind, solar, and storage),
- Load controls and sensitivity to variation in frequency and voltage, and
- Grid protection includes under frequency, under voltage load shedding, and out of step.

At the time of the Incident, there was not a useful power system stability model of the system. LUMA has repeatedly requested the necessary information from PREPA to build this model and still does not have a complete and accurate model because of this. The model that was provided to LUMA from PREPA did not conform to accepted industry practices and was unable to replicate the recordings of the actual system response during two historical outage events from 2019 and essentially used default generation parameters instead of actual parameters provided by the generation facilities. The two events were:

-

³⁶ LUMA "Transmission Reliability Standards and Critical Infrastructure", dated July 12, 2022

- Event 1: Two generating units AES 2 (generating 254 MW) and ECO CT 1 (generating 180 MW) trip offline on March 19, 2019 at 1613 hours.
- Event 2: Aguirre Unit 1 (generating 300 MW) trips offline on August 2, 2019 at 1350 hours.

The LUMA team embarked on an effort to update the dynamic stability model and to benchmark its performance against the recordings of the two events in 2019, and the recent event on April 6th, 2022. Best industry practices use generator performance data, the actual response to events data, transmission system details and protection, and load profiles in a mathematical simulation. This simulation is then validated against actual system performance. The process being used at this time is missing the performance and specifications of the PREPA generators, and relies on only partial information and includes the following steps:

- The existing model was initially simulated and compared to the 2019 event recordings. This
 was a necessary step to ensure that the available model is the same that PREPA and its
 consultant used for the 2019 benchmarking report.
- Detailed analysis of the recordings of the first event in 2019 revealed the need to add loadshedding relays to the model and also to tune the response of the governors of some of the generation units. After incorporating these adjustments into the model, the dynamic model's performance improved. However, these adjustments would then need to be made in the generator and the system.
- Similar detailed analysis and tuning were performed utilizing the recordings of the second recorded event in 2019.
- The third step of the model tuning leveraged the recordings of the Costa Sur event on April 6th, 2022. Being a complete blackout scenario, the recordings showed the timing and system frequency at which several of the generators on the system tripped. This information was utilized to augment the dynamic model with generator protection systems.

• The fourth step utilized good industry practice to reflect more additional protection system representation in the model and tune its settings.

After adjustments to the model that utilized the best available information, the performance of the dynamic stability model improved. However, it is still not deemed to be accurate enough to enable LUMA to design full mitigation measures that reduce the probability of future cascading outage events on the system, or to properly assess the impact of future tranches of renewable procurements on system operation. PREPA needs to collaborate with LUMA to develop the most accurate system model possible by providing the data requested and to help improve the reliability of the electric system on the Island and allow Luma to do performance testing and model development of each of the generating units.

6. Causal Analysis

6.1 Findings and Observations

The evaluation of the various event data, asset history, failure analysis, system protection analysis, system stability analysis, and power generation analysis leads to the following key findings and observations:

- The T&D system that LUMA took over for operations had suffered from deterioration of its maintenance program and severe damage from hurricane and earthquake events.
- Circuit breaker OCB #0082 failed from arcing in the B Phase tank resulting in rupture of the tank.
- Maintenance on OCB #0082 indicated issues with contact resistance and should not have been placed back into service after its 2020 maintenance by PREPA.
- Generation synchronization was performed with several "unknowns" due to a lack of
 information from the generator data systems; however, the generator appeared to
 synchronize with the grid for five seconds prior to the generator sending a trip signal to
 the breaker OCB #0082.
- The protection breaker failure scheme operated appropriately to clear the faults at Costa Sur after the explosion and throughout the system. However, there were several protection element issues that did not perform as intended due to equipment obsolescence and likely lack of maintenance and testing.
- The load shedding scheme failed to prevent the collapse of the system. Evaluation of the system stability model used by PREPA was unable to recreate the event, and the model includes deficiencies relative to assessing system performance.

Based on these key findings, a causal analysis was performed.

6.2 Causal Analysis

The causal analysis was performed using a causal chart in the form of a 5-Whys approach. The events are assessed based on the available data that drives potential root and contributing causes. There are two starting points for the causal analysis:

- 1. Failure of OCB #0082: The direct cause of the breaker failure was very high contact resistance in the B Phase of the OCB. This resulted in a fault upon opening that led to the creation of gases and subsequent explosion. The failure mode was also influenced by the painted breather holes, which did not allow the escape of gas and the pressure build-up. However, the rapid build-up of gasses and pressure due to high fault energy likely would not have allowed the gases to escape quickly to prevent the explosion. Additionally, while not considered a cause of the event, the protection scheme exhibited some deficiencies due to equipment obsolescence.
- 2. Response of the system did not prevent system collapse: The system on the Island is very dependent on the generation capacity in Costa Sur complex (Costa Sur and EcoElectrica). The system design and lack of a validated system stability model do not provide sufficient tools to predict the response of the system under significant conditions properly.

The causal analysis is shown in Figure 9 for the circuit breaker failure and Figure 10 for the electric system collapse.

The causal chain for the circuit breaker failure is based on the following:

- The causal chain has two major paths:
 - o The first major path is related to maintenance performed by PREPA in 2020.
 - The evidence from the maintenance forms shows very high contact resistance. The past maintenance has also indicated high readings prior to maintenance and then high readings above the desired 300μΩ level.

- There was a lack of maintenance limits in the PREPA maintenance procedures. A good maintenance practice would be to know and/or determine what an acceptable limit.
- With maintenance staffing issues, the lack of specific acceptance criteria
 is problematic as this places extensive weight on the experience of the
 individual personnel to make effective decisions.
- Finally, there was a lack of management effectiveness by PREPA in assessing maintenance program risk and decision-making to place the circuit breakers back into service. This is considered a root cause since taking the breaker out of service or overhauling the breaker would have prevented the event.
- The second major path is related to LUMA's lack of identification of the OCB #0082 condition
 - The LUMA visual inspections in July 2021 did not identify the major problems with the Costa Sur breaker. There was limited ability to retrieve maintenance data for these breakers, and the visual inspection would not identify issues with the contact resistance.
 - The initial assessment by LUMA was intended to identify a major visible problem and was not directed at internal assessment. This assessment would be possible once LUMA completes the retrieval of paper maintenance forms and the development of its computerized maintenance management database. Therefore, this assessment is not considered a potential cause.

The causal chain for the system response not preventing the system collapse is based on the following:

- The causal chain has four "major" paths:
 - The first major path is related to the load shedding scheme.
 - The evidence from the operation is that the under-frequency load shedding scheme is inadequate to handle a major event at the Costa Sur

Steam Plant. Costa Sur and EcoEletrica provide a significant amount of power to the grid, and any issues with these generators carry a risk to system stability.

- There is one causal chain below this:
 - There is an inability to define a proper load shedding scheme.
 - The system stability model does not exist to evaluate and predict events on in the system adequately.³⁷
 - There was ineffective PREPA operational management of risk and decision-making by not having a functional system model. This is considered a root cause as a viable system analysis tool would allow the definition of effective load shedding schemes and could have prevented the system collapse.
- o The second major path is related to generation synchronization. In this case, the synchronization was less than adequate, and two paths are applicable.
 - The first path is based on the reliance on manual operation and verbal communication and was based on an operating procedure³⁸ from 1977 that has not been updated and does not reflect the current organizational structure with LUMA as the operator. This path is considered a contributing cause since there is limited information on the generation aspects of this event.
 - The second path is related as there were pre-synchronization inspections required by the generation operator at Costa Sur, and there is no evidence that these inspections were performed by the operator or requested on LUMA. This is also related to the outdated operating procedure and is considered a contributing cause.
- The third major path is related to system protection performance. The protection scheme performed as intended, and there were no incorrect operations of

³⁷ LUMA "Transmission Reliability Standards and Critical Infrastructure", dated July 12, 2022

³⁸ Operating Procedure Number 401-C.S.5&6, dated September 1, 1977.

- protection that impacted this event in a negative manner³⁹. There is no potential cause for this path.
- The fourth major path is related to system design. The overall design of the system is not modeled adequately, and there appears to be an inability of the system to cope with events on the south side of the Island from Costa Sur. There appear to be insufficient contingencies and generation capacity to handle these issues. Since the system is dependent on Costa Sur, the system design should protect against the contingencies that could take out multiple generators. The Costa Sur Substation has been identified as a NERC CIP 14 Substation from planning studies and therefore must be designed to account for multiple events occurring at a single substation. For this event, this is considered a contributing cause to the event since this condition is not capable of being addressed in the near term and must be part of a long-term plan.

Based on the causal chain, the root and contributing causes of April 6, 2022, outage event are listed below. Root causes are those causes that, if they were removed, then the event would have a high probability of not occurring. Contributing causes are those causes that, if they were removed, had some chance of reducing the likelihood of the event.

- Root Cause 1 (RC1): Ineffective PREPA maintenance management and decision-making, which led to OCB #0082 being placed into service with undocumented maintenance limits, and that resulted in breaker failure due to arcing across the contacts. There were no maintenance guidelines for contact resistance in the PREPA work procedures. This resulted in the circuit breaker being returned to service with high contact resistance. This circuit breaker should not have been returned to service by PREPA with this level of contact resistance.
- Root Cause 2 (RC2): Ineffective PREPA operational management and risk decisionmaking resulting from not having a system stability model to assist in development load shedding schemes. The lack of a proper model prevented PREPA from developing and

³⁹ LUMA "Costa Sur Outage Event of 04/06/2022 Progress Report"; NEPR-IN-2022-04, dated July 2022

implementing an effective load shedding scheme. In addition, the lack of transparency of PREPA and response to data requests by LUMA prevent LUMA from developing a model.

- Contributing Cause 1 (CC1): The synchronization protocols (roles and responsibilities) do not match the current organizational structure. The PREPA procedures were developed prior to LUMA, and these procedures were not updated to reflect LUMA operation of the electric transmission and distribution system. This protocol required circuit breaker inspections to be performed prior to synchronization, and there was no evidence that PREPA performed this inspection or requested LUMA to perform this inspection.
- Contributing Cause 2 (CC2): The state of the electric system was not stable and is often not able to prevent cascading events after the loss of major facilities. Addressing this issue will require a long-term effort and transparency from PREPA

These are the primary drivers for the outage event due to the equipment failure at Costa Sur.

Figure 9: Causal Analysis of Failed Circuit Breaker

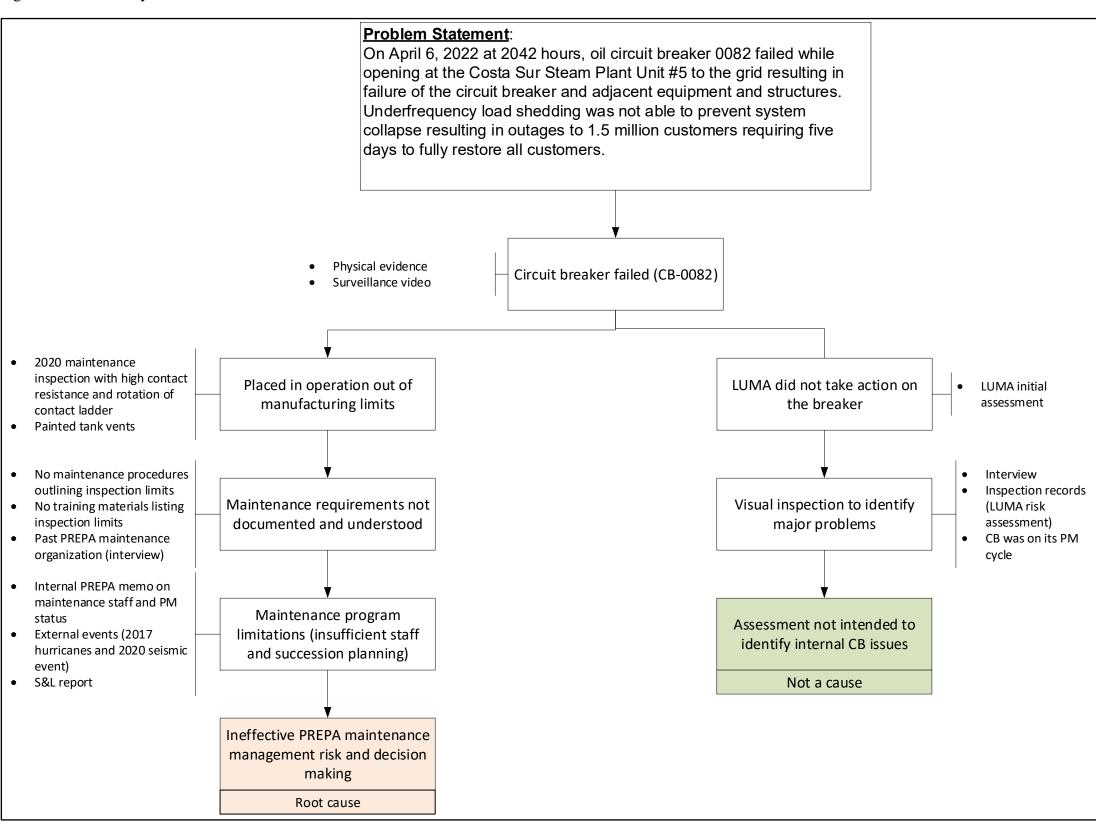
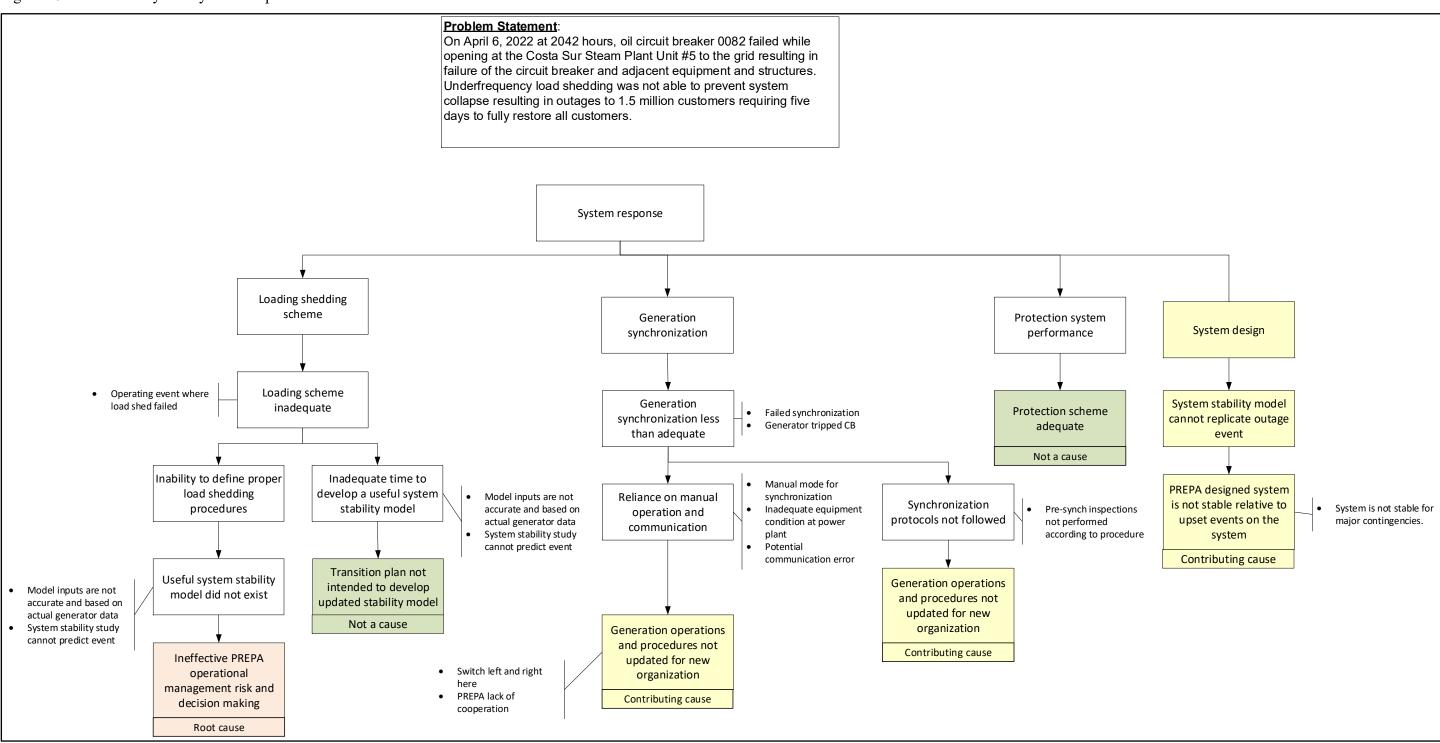



Figure 10: Causal Analysis: System Response

7. Recommended Corrective Actions

The key to a successful causal evaluation is the identification of corrective actions to prevent the recurrence of the event. The recommendations for the causes identified are listed below.

Table 4: Recommended Corrective Actions

Cause	Recommended Corrective Action	Action Owner
Root Cause 1 (RC1): Ineffective PREPA maintenance management and decision-making, which led to OCB #0082 being placed into service with undocumented maintenance limits, and that resulted in breaker failure due to arcing across the contacts. There were no maintenance guidelines for contact resistance in the PREPA work procedures. This resulted in the circuit breaker being returned to service with high contact resistance. This circuit breaker should not have been returned to service by PREPA with this level of contact resistance.	CA1: Complete maintenance bases for circuit breakers and update maintenance procedures to include limits for pass/fail for inspection and maintenance. CA2: Extend maintenance bases to other critical assets and update maintenance procedures accordingly. CA3: Evaluate ITT oil circuit breakers for similar issues relative to OCB #0082 and perform maintenance and overhauls as needed. CA4: Expedite Costa Sur capital program based on recent funding approvals.	LUMA
Root Cause 2 (RC2): Ineffective PREPA operational management and risk decision-making resulting from not having a system stability model to assist in development load shedding schemes. The lack of a proper model prevented PREPA from developing and implementing an effective load shedding scheme. In addition, the	CA5: Update and revise the system stability model to include the following: • Field testing and model development of each of the generation units. This should include the generator, the turbine, the exciter, the power system stabilizer, and the governor models.	LUMA

lack of transparency of PREPA and response to data requests by LUMA prevent LUMA from developing a model.	 Review and update the protection system settings in the model, based on actual relays in the field. Extensive testing of the model against potential scenarios and observed system events. Review and update under frequency load shedding schemes 	
Contributing Cause 1 (CC1): The synchronization protocols (roles and responsibilities) do not match the current organizational structure. The PREPA procedures were developed prior to LUMA, and these procedures were not updated to reflect LUMA operation of the electric transmission and distribution system. This protocol required circuit breaker inspections to be performed prior to synchronization, and there was no evidence that PREPA performed this inspection or requested LUMA to perform this inspection.	CA6: Generation synchronization protocols should be reviewed and updated for all PREPA facilities relative to the change in operating structure for the electric system to ensure roles and responsibilities are well understood	PREPA / LUMA
Contributing Cause 2 (CC2): The state of the electric system was not stable and is often not able to prevent cascading events after the loss of major facilities. Addressing this issue will require a long-term effort by LUMA and transparency from PREPA	CA7: Develop a long-term plan for the overall electric system to identify vulnerabilities in system design and operation; and to define future mitigation actions.	LUMA

8. Conclusions

At 2042 hours on Wednesday, April 6th, 2022, a fault occurred in the 230 kV switchyard of the Costa Sur Steam Plant (SP). Phase B of Oil-Circuit Breaker (OCB) #0082 suffered a catastrophic failure. The failure affected four adjacent circuit breakers and several portions of the substation's lattice structures. Due to the circuit breaker's failure, the 230 kV circuits at Costa Sur SP needed to open to clear the fault, which disconnected EcoEléctrica Generating Facility from the grid and resulted in subsequent outage events that cascaded into a full blackout of Puerto Rico's electrical system. LUMA has retained Exponent to perform a root cause analysis of the incident. The objectives of this analysis are to determine the root and contributing causes of this event and to define the actions to reduce the potential for future events.⁴⁰

The evaluation of the various event data, asset history, failure analysis, system protection analysis, system stability analysis, and power generation analysis leads to the following key findings and observations:

- The system that LUMA took over for operations had suffered from deterioration of its maintenance program and severe damage from hurricane and earthquake events.
- Circuit breaker OCB #0082 failed from arcing in the B Phase tank resulting in rupture of the tank.
- Maintenance on OCB #0082 indicated issues with contact resistance and should not have been placed back into service after its 2020 maintenance by PREPA.

⁴⁰ LUMA "Costa Sur Outage Event of 04/06/2022 Progress Report"; NEPR-IN-2022-04, dated July 2022

- Generation synchronization was performed with several "unknowns" due to a lack of
 information from the generator data systems; however, the generator appeared to
 synchronize with the grid for five seconds prior to the generator sending a trip signal to
 the breaker OCB #0082. No data exists to show if there were any issues during this
 synchronization with the grid.
- The protection scheme operated appropriately to clear the faults at Costa Sur and throughout the system.
- The load shedding scheme failed to prevent the collapse of the system.
- Evaluation of the system stability model used by PREPA was unable to recreate the event, and the model includes deficiencies relative to assessing system performance.

The root and contributing causes of the April 6, 2022, outage event are listed below. Root causes are those causes that, if removed, the event would have a high probability of not occurring. Contributing causes are those causes that, if they were removed, had some chance of reducing the likelihood of the event.

- Root Cause 1 (RC1): Ineffective PREPA maintenance management and decision-making, which led to OCB #0082 being placed into service with undocumented maintenance limits, and that resulted in breaker failure due to arcing across the contacts. There were no maintenance guidelines for contact resistance in the PREPA work procedures. This resulted in the circuit breaker being returned to service with high contact resistance. This circuit breaker should not have been returned to service by PREPA with this level of contact resistance.
- Root Cause 2 (RC2): Ineffective PREPA operational management and risk decisionmaking resulting from not having a system stability model to assist in development load
 shedding schemes. The lack of a proper model prevented PREPA from developing and
 implementing an effective load shedding scheme. In addition, the lack of transparency

of PREPA and response to data requests by LUMA prevent LUMA from developing a model.

- Contributing Cause 1 (CC1): The synchronization protocols (roles and responsibilities) do not match the current organizational structure. The PREPA procedures were developed prior to LUMA, and these procedures were not updated to reflect LUMA operation of the electric transmission and distribution system. This protocol required circuit breaker inspections to be performed prior to synchronization, and there was no evidence that PREPA performed this inspection or requested LUMA to perform this inspection.
- Contributing Cause 2 (CC2): The state of the electric system was not stable and is often not able to prevent cascading events after the loss of major facilities. Addressing this issue will require a long-term effort by LUMA and transparency from PREPA

Corrective actions have been recommended to address these causes, including:

- CA1: Complete maintenance bases for circuit breakers and update maintenance procedures to include limits for pass/fail for inspection and maintenance.
- CA2: Extend maintenance bases to other critical assets and update maintenance procedures accordingly.
- CA3: Evaluate oil circuit breakers for similar issues relative to OCB #0082
- CA4: Expedite Costa Sur capital program based on recent funding approvals.
- CA5: Update and revise the system stability model to include the following:
 - Field testing and model development of each of the generation units. This should include the generator, the turbine, the exciter, the power system stabilizer, and the governor models.

- Review and update the protection system settings in the model, based on actual relays in the field.
- Extensive testing of the model against potential scenarios and observed system events.
- o Review and update under frequency load shedding schemes
- CA6: Generation synchronization protocols should be reviewed and updated for all PREPA facilities relative to the change in operating structure for the electric system to ensure roles and responsibilities are well understood.
- CA7: Develop a long-term plan for the overall electric system to identify vulnerabilities in system design and operation; and to define future mitigation actions.

9. References

- LUMA "Costa Sur Outage Event of 04/06/2022 Progress Report"; NEPR-IN-2022-04, dated July 2022
- 2. "Puerto Rico Outage Investigation: Costa Sur Power Plant"; Exponent Report, dated September 9, 2022
- 3. "Failure Analysis of Costa Sur Oil Circuit Breaker 082", Exponent Report, dated August 25, 2022
- Transmittal # LUMA-PREP-T-00267 "Response to PREPA's Letter Regarding Costa Sur OCB #0082 Event Investigation"; dated June 3, 2022
- 5. PREPA Letter "Análisis Estadístico y Proyectado de la Conservación de Equipos Eléctricos de la Subdivisión de Conservación Eléctrica"; dated October 19, 2016.
- 6. "Independent Engineering Report PREPA Transmission and Distribution System" prepared by Sargent & Lundy, Report No. SL-014468.TD, dated June 2019
- "Puerto Rico Transmission and Distribution System Operation and Maintenance Agreement" between PREPA, LUMA and the Puerto Rico Public-Private Partnerships Authority (Administrator); dated June 22, 2020
- 8. LUMA "Substation Assessment Costa Sur"; dated July 26, 2021
- DR-4339-PR Public Assistance "Project Scope of Work with Cost Estimates Submitted to COR and FEMA; Substations – Costa Sur SP TC – Equipment Repair and Replacement 169896, dated February 1, 2021.
- 10. Department of Homeland Security Federal Emergency Management Agency, Project 169896 Approval; dated July 28, 2022.

- 11. PREPA Operating Procedure Number 401-C.S.5&6, dated September 1, 1977.
- 12. ITE Imperial Corporation: "Instruction Manual for Power Circuit Breakers Type 230kV Transmission Class"; Issue C.
- 13. OCB 0082 MAINTENANCE AND INSPECTION REPORT SEPTEMBER 2008
- 14. OCB 0082 MAINTENANCE AND INSPECTION REPORT MAY 2010
- 15. OCB 0082_MAINTENANCE AND INSPECTION REPORT_OCTOBER 2016
- 16. OCB 0082 MAINTENANCE AND INSPECTION REPORT MARCH 2020
- 17. Hitachi Energy, *LUMA OCB Circuit Breaker Failure: Field Service Inspection Report*, 2022-06-27, p14.
- 18. LUMA "Transmission Reliability Standards and Critical Infrastructure", dated July 12, 2022

Appendix A

Oil Circuit Breaker #0082 Maintenance Records

Costa Sur Steam Plant Transmission Center 230kV OCB-0082 Maintenance Record -- 2010 AEE 015.4-65 REV.6001

PUERTO RICO ELECTRIC POWER AUTHORITY

thg. Eddle William Rivera

SUPERVISOR

SUBSTATION MAINTENANCE AND INSPECTION REPORT

The state of the s

WORK PERFORMED BY

EQUIPMENT CODE 091-00-00-07 A.D. () JOB NO. S.D. () DATE 10-14/Mayo/2010 LOCATION Central Costa Sur DISPATCHER ORDER NO. EQUIPMENT OCB 0082 de 230 kv MANUFACTURER 1.T.E. REQUESTED BY ing. Ricardo L. Tristani Serrano EQUIPMENT S.N. 41-30125-1085 WORK TO BE PERFORMED Pruebas y Conservación SCHEDULE <u>YE</u>S(X) NO() INSPECTION OR WORK PERFORMED MAN-HOURS Equipo fuera de servicio para conservación. Se realizaron pruebas preliminares de las cuales se acompaña copia y cuyos resultados obtenidos estan dentro de los límites permitidos 187.5 *H.Regs.* para operación. Se tomaron las medidas exteriores del mecanímo. 37.5 H.Extra Se procedió a bajar el nivel de aceite aprox. 1960 gls del tanque #1 con la maquina baron 225 H.Total 3-6646. Se procedió a recircular el mismo para filtrarlo. Se sacaron las cámaras interuptoras y se desmontaron afuera. Se encontraron los contactos movibles desgastados, se limplaron y se reacondicionaron. Se limplaron rigurosamente en su interior. Se ensamblaron y se instalaron en el tanque. Se verificó la aislación auxiliar interna y está en perfectas condiciones. Se tomaron todas las medidas correspondientes. Se limpió el tanque en su interior. Se devolvió el aceite ya filtrado. Se procedió a bajar el nivel de aceite aprox. 1960 gls del tanque #2 con la maquina baron 3-6646. Se procedió a recircular el mismo para filtrarlo. Se sacaron las cámaras interuptoras y se desmontaron afuera. Se encontraron los contactos movibles desgastados, se limpiaron y se reacondicionaron. Se limpiaron rigurosamente en su interior. Se ensamblaron y se instalaron en el tanque. Se verificó la aislación auxillar interna y está en perfectas condiciones. Se tomaron todas las medidas correspondientes. Se ilmpió el tanque en su interior. Se devolvió el aceite ya filtrado. Se procedió a bajar el nivel de aceite aprox. 1960 gls del tanque #3 con la maquina baron 3-6646. Se procedió a recircular el mismo para filtrario. Se sacaron las cámaras interuptoras y se desmontaron afuera. Se encontraron los contactos movibles desgastados, se limpiaron y se reacondicionaron. Se remplazó bareta principal por estar agrietada. Se limpiaron rigurosamente en su interior. Se ensamblaron y se instalaron en el tanque. Se verificó la aislación auxiliar interna y está en perfectas condiciones. Se tomaron todas las Regular: medidas correspondientes. Se limpló el tanque en su interior. Se devolvió el acelte ya filtrado. 88,070,18 Se limplaron los bushings con collinite. Extra: \$1,515.12 Se lubricó el mecanismo exterior y se inspeccionó el mecanismo inerior y no se encontró Dietas: \$200.00 Total: nada anormal. \$7,785.28 R.V. R.Diaz, S.Miranda, J.Anés

14/Mayo/2010

DATE

AEE 015.4-65 RRV.6/81

PUERTO RICO ELECTRIC POWER AUTHORITY

EQUIPMENT CODE 091-00-00-07 A.D. () TOB NO S.D. () DATE 10-14/Mayo/2010 LOCATION Central Costa Sur DISPATCHER ORDER NO. EQUIPMENT OCB 0082 de 230 kv MANUFACTURER I.T.E. REQUESTED BY Ing. Ricardo L. Tristani Serrano EQUIPMENT \$.N. 41-30125-1085 WORK TO BE PERFORMED Pruebas y Conservación SCHEDULE YES (X) NO() INSPECTION OR WORK PERFORMED MAN-HOURS **MEDIDAS** LIMITES DIMENSIÓN TANQUE#1 TANQUE#2 TANQUE#3 3 <u>1/</u>8, 1/32 3 1/2 IN 3 9/16 IN 3 1/2 IN 1 1/2,1/32 J (1 17/32 IN) N/A N/A N/A <u>3 ½, 1/8</u> D 1) 3 7/16, 2)3 5/8 <u>3)3 3/8, 4)</u>3 3/8 5)3 1/2,6)3 9 5/32, 1/32 T <u>1) 5/32, 2) 5/32</u> 3) 5/32, 4) 5/32 <u>5) 5/32, 6)5/3</u> 2 5/8, 1/4 O.L. DASHPOT 2 5/8 IN <u>2 1/2</u> IN 2 1/2 IN 3/32, 1/8 C <u>1) 3/32, 2) 1/16</u> 3) 3/32, 4)3/32 5)5/64, 6)3/32 20, 3/4 A (STOKE) 19 3/4 IN 19 13/16 IN 20 in 15/16, 3/16 C.WIPE 5/8 IN 13/16 IN 5/8 IN RESISTORS 1)2446, 2)2434 3) 2412, 4) 2382 5)2512, 6)24 Se realizaron pruebas de velocidad y se ajustó la velocidad de disparo. Se recomienda el equipo para servicio. R.Ve' -

3.Di. S.Miranda, J.Anés WORK PERFORMED BY

14/Mayo/2010 DATE App. Eddie William Rivera SUPERVISOR

Nameplate - Oil Circuit Breaker

Company	PREPA	Serial Number	141 00000
Location	COSTA SUR 230KV		41-30125-1085
Division	C.E.P.S.E.	Special ID	091-00-00-07
Manufacturer		Circuit Designation	OCB-0082
Yr. Manufactured	TTE	Туре	230-KM-20000-20
	1970	Class	20000-20
Mfr. Location	USA	Месh. Турс	D 454
Oil Volume	1960 UG	BIL	P-45A
Weight	84060		900 kV
# of Tanks	3	Interrupting Rating	43.0 kA
Control Volts		Counter	
	125	Amps	2000
kV	242		2000
Note	TESTED BEFORE MAI	NTEN A NOTE	

Test Date Air Temperature			1:19:06 PM	Weather	SUNNY
Tested by	31 °C	Tank Temp,	38 °C	RH.	48 %
Checked by	- -	Work Order#		Last Test Date	7/18/2001
Checked Date	 	Test Set Type		Retest Date	
ast Sheet #		Set Top S/N		Reason	BRKR MAINT,
OHERE W	<u> </u>	Set Bottom S/N			

Bushing Namplate

Dsg	Serial	Mfr	Туре	C1 % PF	C1 Cap	C2 % PF		kV	Amps	Year
-	1687361	GE	U	.27	459	- F	Cap		 	
2	1687345	GE	TI	.25		<u> </u>	4223	146	2000	1970
3	1686334	GE),		453	 	4282	146	2000	1970
4	1686332	GE		.26	460		4285	146	2000	1970
5	1686333	GE		.25	458		4552	146	2000	1970
6	1686329	GE		.25	459		4235	146	2000	1970
		OE	U	.26	457		4408	146	2000	1970

Overall Tests

Energize	Bus Ft	Ins. #	Ph.	Test kV	mA	W. at.	04.77	 .		-	
1	15	6	c			Watts	%PF corr	Corr Fetr	TLI	IR _{auto}	IR _{ntar}
2	15	 -	_	10.003	2.888	0.2420	0.80	0.95	 		n _{la}
3		6	C	10.003	2.873	0.2210	0.74	0.96	 -	G	<u> </u>
	15	6	В	10.003	2.877	0.2550	0,85	0.95	 -i	<u> </u>	<u> </u>
4	15	6	В	10.003	2.848	0.1990	0.67			G	
5	15	6	A	10,002	2.880	0.2520		0.96		G	
- 6	15	6	Α	10.003		0.2040	0.84	0.95	[G	
1,2	30	12	c	10.004	5.530		0.68	0.96		G	
3,4	30	12	В			0.4090	0.74	1.00	-0.054	G	
5,6	30	12	Ā		_	0.4430	0.80		-0.011	G	
			Λ	10.002	5,549	0.4230	0.76		-0.033	G	

Bushing C1

ID	Test kV	nιA	Watts	%PF corr	Corr Fetr	Cantala	I ID	
1	10.003	1.718	0.0680	0.39		Cap(pF)	IR _{auto}	IR _{nsar}
2	10.003	1.700	0.0920		0.97	455.64	G	
3	10.005	1.734		0.52	0.96	450.85	D	
4			0.0940	0.52	0.97	460.03	D	
-4	10.004	1.717	0.0730	0.42	0.97	455.40	G	
5	10.004	1.735	0.0830	0.47	0.97			
<u> </u>	10.004	1.709	0.0650	0.37		460.31	G	
				V.J1	0.97	453.25	G	

Bushing C2

ID	Test kV	mA	Watts	%PF corr	Corr Fetr			r
1	0.5000	15.973				Cap(pF)	IR auto	$\mathbf{R}_{\mathrm{max}}$
2	0.4990		0.6280	0.39	1.00	4237.0	G	
 _		16.252	0.6480	0.40	1.00	4311.0		
.5	0.4990	16.190	0.8400	0.52	1.00		G	
4	0.5000	16.073	0.8710	0.54	· -	4294,4	<u> </u>	
5	0.5000	16.318			1.00	4263.4	G	
6	0.4990		0.8140	0.50	1,00	4328.3	G	
<u>~</u>	0.4590	16,611	0.7800	0.47	1.00	4406.2	G	

Insulating Fluid Tests

1	Causal T	· 							
	Sample Location	Deg C	Test kV	шA	Watts	%PF corr.	G. B.	177	<u></u>
į	TANK#1	36	10.003	0.9000	 -		Corr Fact	IR _{auto}	IR _{man}
Ī	TANK#2	36	_		0.0150	0.08	0.48	G	
1	TANK#3		10.003	0.9080	0.0070	0.04	0.48	G	 -
Í,	171NK#3	36	10.002	0.9040	0.0400	0.21		·	
	NA 0					V.21	0.48	G	[

Oil Quality Tests

Desc. Color ASTM D1816	ASTM D877 Total part. per 10ml Water Content Neutral Number
Tank 1 1.0 Tank 2 1.0	
Tank 3 1.0	24.0 16.0
	10.0

Insulation Resistance

Mfr.	Serial #	
Open Breaker Tests Volts	Cannada	
Contact	Connection T1 T2	PI

Contact Resistance

Mfr.	Serial #	
Closed Breaker Tests Volts Connection	T1(Mohms) T2(Mohms) Tx	
	T2(Mohms) PI Contact Res.(μOhms)	

	Tank 1	J			
	Tank 2	· -	╀╼┞╼╌	864	
	Tank 3	 	╂╌┾╌┈	933	
Note			<u> </u>	935	
<u> </u>					

Nameplate - Oil Circuit Breaker

Company	PREPA	Serial Number	41.20108.100
Location	COSTA SUR 230KV	Special 1D	41-30125-1085
Division	C.E.P.S.E.		091-00-00-07
Manufacturer		Circuit Designation	OCB-0082
	ITE	Туре	230-KM-20000-20
Yr. Manufactured	1970	Class	20000 20
Mfr. Location	USA	Mech. Type	P-45A
Off Volume	1960 UG	BIL	
Weight	84060		900 kV
of Tanks	3	Interrupting Rating	43.0 kA
Control Volts		Counter	_
	125	Amps	2000
kV	242		2000
Note	TESTED AFTER MAIN	PENIA MOUE.	

Test Date	5/14/2010	Test Time	10:00:37 AM	Wenther	SUNNY
Air Temperature	37 °C	Tank Temp.	32 °C	RH.	37 %
Tested by		Work Order#		Last Test Date	5/10/2010
Checked by		Test Set Type		Retest Date	3/10/2010
Checked Date		Set Top S/N	 	Reason	DDrep as a
Last Sheet #		Set Bottom S/N	 	Acceson	BRKR MAINT.

Bushing Namplate

Dsg	Serial	Mfr	Туре	C1 % PF	C1 Cap	C2 %	C2	kV	Amps	Year
1	1687361	GE	Ti			PF	Cap		711ups	y est.
2	1687345	GE	<u>U</u>	.27	459	<u> </u>	4223	146	2000	1970
3	1686334	GE		.25	453		4282	146	2000	1970
4	1686332		<u> </u>	.26	460		4285	146	2000	1970
-		GE	U	25	458		4552	146		
<u> </u>	1686333	GE	υ	.25	459	├── ┤			2000	1970
6	1686329	GE	FT.			┝┈┈╢	4235	146	2000	1970
				.26	457	L i	4408	146	2000	1970

Overall Tests

Energize	Bus Ft.	Ins. #	Ph.	Test kV	- A	137-4					
1	15				mA	Watts	%PF corr	Corr Fetr	TLI	IR _{auto}	IR
	15	6	C	10,003	2,853	0.1470	0.50			auto	IR
2	15	6	C	10.003	2.875	0.1650		0.96		G	_
3	15	6	В				0,55	0.96		G	
4			-	10.003	2.869	0.1940	0.65	0.96		_	
	15	6	В	10.002	2.844	0.1480	0.50			G	
5	15	6	Λ	10.003	2.872	0.1880		0.96		G	
6	15	6	Α	10.003			0.62	0,96		G	
1,2	30	12				0.1480	0.49	0.96		G	
			С	10.002	5.517	0.2860	0.52		0.000		
3,4	30	12	В	10.003	5.520	0.3230			-0.026	_G_ [
5,6	30	12	A	4 10 10 10			0.59	1.00	-0.019	G	
			-, 1	10.003	5.524	0.3060	0.55	1.00	-0.030	- 	

Insulating Fluid Tests

Sample Location	Dog C	70 . 200	 					
	Deg C	Test kV	nıA	Watts	%PF corr.	Corr Fact	IR _{ento}	IR
TANK # 1	31	10.003	0.9020	0.0080	0.05	0.61		ากลก
TANK # 2	31	10.003	0.9010	0.0120	0.08		G	
TANK#3	31	10.003	0.9010			0.61	G	
		10.003	0.9010	0.0130	0.09	0.61	G	

Oil Quality Tests

Desc.	Color	ASTM D1816	ASTM D877	Total part, per 10ml	Water Contant	37
	1		30	part part ton	Water Content	Neutral Number
Tank 2	_ 1		31			
Tank 3	. 1		31			 -
						i

Insulation Resistance

Mfr.	Serial #
Open Breaker Tests Volts	
	Connection T1 T2 PI

Contact Resistance

Mfr. Closed Bra	eaker Tests	Seri	u#		
Volts	Connection	T1(Mohms)	T2(Mohms)	PI	Contact B. (O)
	Tank 1			╅╧╅╼	Contact Res.(µOhms)
	Tank 2			╂═╌╞╾	432
	Tank 3			╌╂	463
Note				 _	470

BREAKER PERFORMANCE REPORT TDR9000 Version: RE 4.01

Manufacturer : I.T.E.

Location: Sample Location &

Model Number : 230-KM-20000-20

Circuit : OCB 0082

Serial Number: 41-30125-1085

Operator: ING.E.W.RIVERA

Instr Book # :

Mechanism # : PA-45A

Special ID : 091-00-00-07

Mech Instr # :

Operation Counter :

Test Type : TRIP-FREE

Test Plan Name :

Test was performed on 5/14/2010 at 11:19:09.

Motion Channels 1-3 Transfer Function 1.000 in Travel at the contacts is 1.000 in Travel at the transducer.

Command Parameters

Trip Pulse 390.00 Cy

Close Pulse (Standing)

8.00 cy

Command Currents

Delay 1 $0.50 \, \, \mathrm{cy}$

Trip Current 7.86 A pk Close Current 0.03 A pk

OCB CONTACT TIMING TRIP-FREE OPERATION

Trip-Free Dwell Time Within a Phase

	within a phase	
Specifications	Test results	Compare
Maximum******* cy Minimum*******	Phase A cy	· ·
	Phase B 2.06 Phase C 2.08	İ
Trip-Free Dwell m		

Trip-Free Dwell Time Within the Breaker

-			Diedrei
	Specifications		Test results Company
			Compare
	1	12 mm = 14 =	
		Breaker	су
			,

Main Contact Closing Time Measured From Test Initiation

Minim******	Test results CONTACT1 CONTACT2 15.87 CONTACT3 15.82	Velocity Compa	 ខេ
· —- — · — · — · — · — · — · — · — · — ·			

Delta Main Contact Closing Time Within the Breaker

	Specifications Test results Maximum******** cy Breaker 0.05 cy	Compare
Г		

Main Co	ntact Openia	ng Time	Measuri			st Initiation	·····
Specifications		results	1	Trave		Velocity	Compare
Maximum******* cy Minimum******		17.93	су *:			***** £t/s	
Delta Ma	in Contact (Time W	ithin	the	Breaker	
Specifica		ŧ		Test			Compare
Maximum****** cy			Breake	 r			-·· <u></u>
		User 1	lotes				
Page 1		oses. I	<u> </u>				
						- ·	·
Page 2							···
Page 3			··-·				· · ·
[<u></u> <u></u>							

	6	0	¢	_3	54 60	£, ¢, [36 42	30.	18 24	- 1		0
·					<u> </u> - -		E C SOUNCE	.			!	
				}	-	VEL., A[1]			-			!
				- · .								
	<u> </u>				-				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			1 7 1 1
	; ;·	1 1 1 1 1	 · 	l 				.	ļ			
- - - - -	<u>.</u>				 	. !		1	, , , , , , , , , , , , , , , , , , , ,	1-1-1-1		11.5
	[TRAVEL , A[1]					ļ	
].	-	-	-]] 			
-												
			1			· · · · · · · · · · · · · · · · · · ·			. • •		· · · · <u>·</u>	
								. !			÷ V	4.25
		٠.			- :	. ::	- :				.1	
-						-						
									:		:	14,75
										· · .		
-	i 	 							- · -	(<u>.</u> .		5 ·-
] ! 		-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Close Currenc] - -		
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		***************************************	: 1	1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				j	-0.029
- -	ļ	.							!		1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-0.0145 -
										· · · · · · · · · · · · · · ·		_ lo
-		-				-	 	 				0.0145
-						Trib Current						0.029
					1 2 3 1 1 1 4 1	1						
	:	·· - -	-1							1		
	. !	 		l.						.5 		Je-e
				;; 	land	Close Command	-	-	!		 	7.9
; -	-			. !			. - - - - -	. :,	-		 	OFF
					end	Tr. Commend		; 		; 		ð

BREAKER PERFORMANCE REPORT TDR9000 Version: RE 4.01

Manufacturer : I.T.E.

Location: Sample Location 1

Model Number : 230-KM-20000-20

Circuit : OCB 0082

Serial Number: 41-30125-1085

Operator: ING.E.W.RIVERA

lnstr Book # :

Mechanism # : PA-45A Mech Instr # :

Special ID : 091-00-00-07

Operation Counter :

Test Type

: TRIP

Test Plan Name :

Test was performed on 5/14/2010 at 11:31:15.

Motion Channels 1-3 Transfer Punction

1.000 in Travel at the contacts is 1.000 in Travel at the transducer.

Command Parameters Trip

Pulse

4.00 cy

Command Currents

Trip Current 7.86 A pk

MECHANICAL MOTION CHANNELS 1-3 TRIP OPERATION

			_
Specifications	İ	Test results	Compare
	· · · · · · · · · · · · · · · · · · ·		 :

Average velocity in Open zone 1

· ·						
Minimum	12.00 ft/s 10.00			·· — · · · · <u>—</u>	10.90 ft/s	Pass
Zone 1	1.000 in to	5.000 in	i			

Total Travel

1	·—·—							
ł	T	20.000						
ſ	Tolerance +	0.750	ruches		TRAVEL 1			
١		0.750		ļ	TRAVEL 2	4.110.110	Pass	S
ſ		—		1	TRAVEL 3		!	
l					··-· ·- —	· ·		
1							- · · · · · · · · · · · · · · · · · · ·	

Overtravel

	Expected Tolerance	-1- -	0.032	inches		TRAVEL TRAVEL TRAVEL	 1 2 3	0.014	 inches	-· 5	Pase	
İ					 		·	·			J 	

Rebound

Expected Tolerance +	0.063 inches 0.000		0.059 inches	Pass
· — — — — —				,

OCB CONTACT TIMING - MOTION CHANNELS 1~3 TRIP OPERATION

·	ontact Openi	ng Time Mea 	sured From T	est lnitiation	ı
Specifications		results	Travel	Velocity	Compani
Maximum******* cy Minimum******	CONTACT1 CONTACT2 CONTACT3	2.03 cy 2.21	****** in	***** ft/s	
Delta Ma	in Contact (Opening Tim	e Within the	Breaker	
Specifica	tions		Test rest		
Maximum****** cy	··-·	Bre	aker 0.18		Compare
·-··· ··	Insertion	Resistor	Ouration Time		— ·— — · -
Specifica	tions]	Test resu		
Maximum******* cy Minimum******		CONTA	ACT1 0.04 ACT2 0.01	- ···	Compare
Resistor S	witch Openin	g Time Meas	ured From Te	st Initiation	
Specifications	Test r	esulta		Velocity	Compare
<u> </u>	CONTACT1 CONTACT2 CONTACT3	2.07 cy 2.21 2.15	****** in	***** ft/	·
		Opening T	ime Within th	··	- <u></u> -
Delta Res				e Breaker	
Delta Res	ions	1			
Specificat	ions	. 1	Test resul	ts 1	Compare
Specificat Maximum******** cy	ions 		Test resul	cy	
SpecificatMaximum******** cy	ions 		Test resul	cy	
Specificat Maximum******** cy	Resistor V	Bread	Test resul	cy	··
SpecificatMaximum******** cy	Resistor V	Bread	Test resul	cy	

BREAKER PERFORMANCE REPORT TDR9000 Version: RE 4.01

Manufacturer : I.T.E.

Location: Sample Location 1

Model Number : 230-KM-20000-20

Circuit : OCB 0082

Sorial Number: 41-30125-1085

Operator: ING.E.W.RIVERA

Instr Book # :

Mechanism # : PA-45A

Mech Instr # :

Special ID : 091-00-00-07

Operation Counter :

Test Type

ř

: CLOSE

Test Plan Name

Test was performed on 5/14/2010 at 11:32:02.

Motion Channels 1-3 Transfer Function 1.000 in Travel at the contacts is 1.000 in Travel at the transducer.

Command Parameters Close Pulse

8.00 cy

Command Currents Close Current 0.03 A pk

MECHANICAL MOTION CHANNELS 1-3 CLOSE OPERATION

	·— T—	——·—·—	
Specifications	ļ	Test results	Compare
	,		

Average velocity in Close zone 1

Maximum Minimum Zone 1	20.00 ft/s 12.00 5.000 in to	1.000 in	VEL.1	13.86 ft/s	Pass
		· · · · · · · · · · · · · · · · · ·	-··· . <u>-</u>		

Total Travel

	Expected Tolerance +	0.750	 TRAVEL 1 TRAVEL 2 TRAVEL 3	19.920 inches	Pass
3			 		1


Overtrave]

Expected Tolerance +	0.250 inches 0.125 0.250		 0.243 inches	Pass
[· ·- · ·	···· - :		ı

Rebound

Expected 0.125 inches TRAVEL 1 0.081 inches Tolerance + 0.125 Pass TRAVEL 2

				·· ·	_ .
<u>.</u>		Contact	Wipe		
Expected 0.625 Tolerance + 0.250 - 0.125	inches	TRA	VBI 1 0.63 VEL 2 VEL 3	 5 inches	Pass
	OCB CONTAC	T TIMING - : CLOSE OPER	MOTION CHANNI ATION	ELS 1-3	·
Main Co	ntact Clos	ing Time Me	asured From 1	est Initiation	·
Specifications		results	Travel		
Maximum******* Cy Minimum******	CONTACT1	15.44 cy	***** ir	***** Et/s	
	CONTACTS	15.44	*****	*****	
Delta Ma	in Contact		Re Within the		·— ·— ·—
Specifica	tions			· · · ·	·- ···
Maximum******* cA		' Bre	aker 0.0		Compar
		—· ·— · — · -	—· — — —		
	_				
	Insertio	on Resistor	Duration Tim		
Specificat	·-·· · · · · · · · · · · · · · · · ·	Resistor	Test res	ults [Compare
Specificat	iong	CONT	Test res	ults [Compar
Specificat Maximum******* cy Minimum*******	ions	COMT	Test res ACT1 0.01 ACT2 0.02 ACT3 0.07	cy	· · · · · · · · · · · · · · · · ·
Specificat Maximum******** cy Minimum******* Resistor Sw	ions	CONT CONT CONT	Test res ACT1 0.01 ACT2 0.02 ACT3 0.07	cy	
Specificat Maximum******* cy Minimum******* Resistor Sw Specifications	ritch Closi	CONT CONT CONT CONT	Test res ACT1 0.01 ACT2 0.02 ACT3 0.07 Bured From Tell Travel	cy	Compare
Specificat Maximum******* cy Minimum******* Resistor Sw Specifications	vitch Closi Test CONTACT1	CONT CONT CONT CONT	Test res ACT1 0.01 ACT2 0.02 ACT3 0.07	cy est Initiation Velocity ****** ft/	Compare
Specificat Maximum******* cy Minimum******* Resistor Sw Specifications	rions Test CONTACT1 CONTACT3	CONT CONT CONT CONT OF Time Mea results 15.43 cy 15.43	Test res ACT1 0.01 ACT2 0.02 ACT3 0.07 Sured From Tell ******* in *******	cy est Initiation Velocity ****** ft/ ******	Compare
Specificat Maximum******* cy Minimum******* Resistor Sw Specifications	rions Test CONTACT1 CONTACT3 CONTACT3	CONT CONT CONT CONT Time Mea results 15.43 cy 15.43 15.38	Test res ACT1 0.01 ACT2 0.02 ACT3 0.07 Sured From Tell Travel ******** ******* ******* Time Within tell	cy est Initiation Velocity ****** ft/ ******	Compare
Specificat Maximum******* cy Minimum******* Resistor Sw Specifications	rions Test CONTACT1 CONTACT3 CONTACT3	CONT CONT CONT CONT CONT Time Mea Tesults 15.43 cy 15.43 15.38	Test res ACT1 0.01 ACT2 0.02 ACT3 0.07 Eured From Tell Travel ******** ******* Time Within to	cy st Initiation Velocity ****** ****** he Breaker Its	Compare
Specificat Maximum******** cy Minimum******** Resistor Sw Specifications Delta Res Specificat:	rions Test CONTACT1 CONTACT3 CONTACT3	CONT CONT CONT CONT CONT Time Mea Tesults 15.43 cy 15.43 15.38	Test res ACT1 0.01 ACT2 0.02 ACT3 0.07 Sured From To Travel ******* in ******* ******* Time Within to	cy st Initiation Velocity ****** ****** he Breaker Its	Compare
Specificat Maximum******** cy Minimum******** Resistor Sw Specifications Delta Res Specificat: Specificat:	rions rest CONTACT1 CONTACT3 istor Switch ions	CONT CONT CONT CONT CONT CONT CONT CONT	Test res ACT1 0.01 ACT2 0.02 ACT3 0.07 Eured From Tell Travel ******** ******* Time Within to	cy st Initiation Velocity ****** ****** he Breaker lts cy	Compare

Costa Sur Steam Plant Transmission Center 230kV OCB-0082 Maintenance Record -- 2016

AEE 015.4-55 REV. 6/81

PUERTO RICO ELECTRIC POWER AUTHORITY

SUBSTATION MAINTENANCE AND INSPECTION REPORT

	444	
3%	50	1
19	и	O)
3/3	200	- //
34	\simeq	20

EQUIPMENT CODE 091-00-000-007 A.D. 1 Y 2 OCTUBRE 2016 DATE S.D. JOB NO. 1@10 DISPATHER ORDER NO. CENTRAL COSTA SUR PATIO 230 KV LOCATION ITE MANUFACTURER OCB 0082T EQUIPMENT 41-30125-1085 EQUIPMENT S.N. ING. EDDIE W. RIVERA BERMUDEZ REQUISTED YES X NO SCHEDULE CONSERVACIÓN WORK TO BE PERFORMED MAN - HOURS INSPECTION OR WORK PERFORMED HR-150.00 EQUIPO FUERA DE SERVICIO CON AUXILIARES ABIERTOS. SE REALIZARON PRUEBAS PRELIMINARES SATISFACTORIAS. PRUEBA DE " CONTACT RESISTANCE " CON VALORES SUMAMENTE ALTOS . POLO 3 = 1067 POLO 2 = 2047 POLO 1 = 949 SE BAJÓ NIVEL DE LOS TANQUES RECIRCULANDO EL ACEITE EN LOS TANQUEROS DE 3,000 GALONES . SE ABRIERON LAS TAPAS ENCONTRANDO LAS JUNTAS EN BUENAS CONDICIONES Y CANTIDAD MODERADA DE CARBÓN Y SLUGE EN LOS COMPARTIMIENTOS . SE REMOVIERON LOS "UPPER AND LOWER SHIELDS". SE REMOVIERON LAS RESISTENCIAS Y SE LIMPIARON . SE REMOVIERON LAS CÁMARAS INTERRUPTIVAS DESARMÁNDOLAS EN SUS PARTES, SE PULIERON LOS CONTACTOS FIJOS E INTERMEDIOS CON LIJA Y PAÑOS SE LIMPIARON LOS " SPACERS " , LAS JUNTAS EN " O-RING " , LOS " BAFFLES " Y SE PULIERON LOS CONTACTOS MOVIBLES EN LAS CÁMARAS. SE PULIERON LOS CONTACTOS FIJOS EN LOS "BUSHINGS ADAPTERS" Y LOS MOVIBLES EN LAS VARETAS (ANCLAS) . SE CAMBIO TAPON ROTO DASHPOT TK#3. SE TOMARON LAS MEDIDAS QUE RECOMIENDA EL FABRICANTE PARA UNA OPERACIÓN SATISFACTORIA. SE NORMALIZARON LOS COMPONENTES Y SE INSTALARON LAS CÁMARAS. SE LIJARON LOS BUFFERS CON LIJADORA PARA SUAVIZAR SU ENTRADA . SE FABRICARON JUNTAS PARA LOS UST TAPS SE LLENARON LOS UST TAPS CON ACEITE LIMPIO . SE LLENARON LOS TANQUES HR\$5,280.00 DIET\$168.00 CON EL ACEITE FILTRADO. TOT\$5,448.00

RICHARD, JULIO, LUIS

NOEL, JAVIER, GERALD

WORK PERFORMED BY

2 OCTUBRE 2016

DATE

ING, JORGE SANTIAGO

SUPERVISOR

AEE 015.4-55 REV. 6/81

PUERTO RICO ELECTRIC POWER AUTHORITY

SUBSTATION MAINTENANCE AND INSPECTION REPORT

0

WORK PERFORMED BY

NT CODE 091-00-000-007

				EONI-WENT CODE	091-00-000-00
			A.D. S.D.	DATE 1Y200	TUBRE 2016
NO. CENTR	AL COSTA	SUR PATIO 23		DISPATHER ORDE	
CATION <u>CENTR</u> UIPMENT	OCB 008			MANUFACTURER	ITE
QUISTED		DIE W. RIVERA	BERMUDEZ	EQUIPMENT S.N.	41-30125-1085
ORK TO BE PERFO	RMED	CONSERVAC	IÓN	SCHEOULE	YES X NO
		ECTION OR WO	RK PERFOR	/IED	MAN - HOURS
	1 - 2 - 2 - 3 2	ENDADAS	POR FLEF	ABRICANTE:	
MEDIDAS	(ECOM	TANOUE #	1 TANQU	E#2 TANQUE#	# 3
			19 - 3/4	19 - 3/4	
TRAVEL		19 - 3/4	3/4	5/8	
WIPE		5/8		2-5/8	
DASHPOT	<u></u>	2-5/8	2-5/8	2-0/0	
- Lordan		3-1/8	3-1/6	3-1/8	
DIMENSIÓN			5/32,1/8	1/8,1/8	
	_ _	5/32,1/8	3-9/16,3-1		
	D	3-1/2,31/2			
RESISTENCIA	(Kohms)	1.850 , 1.870	1.051, 1.	1.010	
				<u> </u>	
SE PULIERON LO	AIHRUB B	IGS CON COLL	INITE.		
SE REALIZARON	PRUEBAS	S FINALES SATI	SFACTORIAS	· · · · · · · · · · · · · · · · · · ·	neins -
SE REALIZARON	PRUE8AS	S DE VELOCIDA	D CON RESU	LTADOS SATISFACTO	JRIO3 .
" CONTACT RES			RIO (microon	ms) :	
POLO 1 = 487	F	OLO 2 = 274	POL	.O 3 = 488	
SE RECOMENDO	S EL COLII	DO DARA SERV	/ICIO .		
SE RECOMENDO) EL EQUI	O TROTOLIC			
				<u> </u>	
<u> </u>			<u> </u>		
<u></u>				- T	11/20
<u> </u>				-120	[-/
RICHARD, JULIO,LU	IS			iose /inica	IORGE SANTIAGO
NOEL, JAVIER, GES	RALD		2 OCTUBRE 2	10 / MG 3	TSUPERVISOR
WORK BEREO	RMED BY	,	DATE	/ //	1 SOLEKAROOK

41-30125-1085_BO(1)

Report Source

OilCircuitBreaker

Session Test Date

10/2/2016 1:30:37 PM

Nameplate - Oil Circuit Breaker

Company	P.R.E.P.A.	Serial Number	41-30125-1085
Location	SOUÇO	Special ID	091-000-000-007
Division	GEN;C.E.P.S.E.	Circuit Designation	O.C.B.#0082 T
Manufacturer	LT.E.	Туре	230-KM-20000-20
Year Manufactured	1970	Class	OliCircuitBreaker
Mfr Location	U.S.A.	Mechanism Type	P-46A
Interrupting Rating	43.0 kA	BIL	900 kV
Qii Volume	1960.0 UG	Interrupting Rating	43.0 kA
# of Tanks	3	Counter	
Control Volts	125	Amps	2000
kV	242		

Administration

Test Dale	10/2/2016	Test Time:	1:30 PM	Weather		Sunny
Air Temperature	32°C	Apparatus Temperature	36°C	Humidity		100 %
Tester	R.DIAZ	Work Order	9	Date Last Tested	I	
Verified		Test Set Type	M4000	Date Relested		
Verification Date	10/2/2016	Set Top Serial #		Reason		BRKR MAINT.
Last Sheet #		Set Bottom Serial	i#	Travel Time		
Purchase Order		ins. Book #		Duration		
Copies		Sheat #		Crew Siza		3

Bushing Nameplate

Designation	Şerjal#	Manufacturer	Type	C1 %PF	С1 Сар	C2 %PF	C2 Cap	Rated kV	Amps
1	1687361	General Electric	U	0.27	459		4223	146	2000
2	1687345	General Electric	IJ	0.25	453	٠	4282	146	2000
3	1686334	General Electric	Ų	0.26	460	٠	4285	146	2000
4	1686332	General Electric	Ų	0.25	458	+	4552	146	2000
5	1686333	General Electric	U	0.25	459	•	4235	146	2000
6	1686329	General Electric	U	0.26	457	•	4408	146	2000

Designation 1	Voltage	Serial # 1687361	
Catalog #	Amps 2000 A	BiL 900 kV	Тар Ү
Class	Year 1970	Drawing	
Style	Other	S.O. Number	
Physical Dimensions			
Creep Distance *	Overall Length *	inner Seal Dia. *	Eff. Gnd Slaeve *
Total Weight *	Recess Depth *	Outer Seal Dia. *	Slot Size *
Units			
Flange Dimensions			
To Bottom *	# Bolts *	Max. Diameters	Draw Lead
To Top *	Bolf Size *	Below Flange *	Tube ID *
	Circle Diameter *	Above Flange *	To Pin *

Bushing Additional Details -2

Designation 2	Voltage	Serial # 1687345	
Catalog #	Amps 2000 A	BIL 900 KV	Тар Ү
Class	Year 1970	Drawing	
Style	Other	S.O. Number	
Physical Dimensions			
Creep Distance *	Overall Length *	Inner Seal Dia. *	Eff. Gnd Sleeve *
Total Weight *	Recess Depth *	Outer Sea! Dia. *	8lot Size *
Units			
Flange Olmensions			
To Bottom '	#Bolts *	Max. Diameters	Draw Lead
. To Top *	Bolt Size *	Below Flange *	Tube (D *
	Circle Diameter *	Above Flange *	To Pin *

Designation 3	Voltage	Serial # 1686334	
Catalog #	Amps 2000 A	BIL 900 kV	Тар Ү
Class	Year 1970	Drawing	
Style	Other	8.O. Number	
Physical Dimensions			
Creep Distance *	Overall Length *	Inner Seal Dia. *	Eff. Gnd Sleeve *
Total Weight *	Recess Depth *	Outer Seal Dia. *	Slot Size *
Units			
Flange Dimensions			
To Sottom *	# Bolts *	Max. Dlameters	Draw Lead
To Top *	Bolt Size *	Below Flange *	* di eduT
	Circle Diameter *	Above Flange *	To Pin *

Bushing Additional Details -4

Designation 4	Voltage	Serial # 1686332	
Catalog #	Amps 2000 A	BIL 900 kV	Тар Ү
Class	Year 1970	Drawing	
Style	Other	8.O. Number	
Physical Dimensions			
Creep Distance *	Overall Length *	Inner Seal Dia. *	Eff. Gnd Sleeve *
Total Weight *	Recess Depth *	Outer Seat Dia. *	Slot Size *
Units			
Flange Dimensions			
To Bottom *	# Bolts *	Max, Diameters	Draw Lead
То Тор *	Bolt Size *	Below Flange *	Tube ID *
	Circle Diameter *	Above Flange *	To Pin *

Designation 5	Voltage	Serial #	1686333	
Catalog #	Amps 2000 A	BIL	900 KV	Tap Y
Class	Year 1970	Drawing		
Style	Other	S.O. Number		
Physical Dimensions				
Creep Distance *	Overall Length *	Inner Seal Dia.	•	Eff. Gnd Sieeve *
Total Weight *	Recess Depth *	Outer Seal Dia.	•	Slot Size *
Units				
Flange Dimensions				
To Bottom '	# Bolts *	Max. Diamete	ers	Draw Lead
То Тор *	Bolt Size *	Below Flange	•	Tube ID *
	Circle Diameter *	Above Flange		To Pin *

Designation 6	Voltage	Serial # 1686329	
Catalog #	Amps 2000 A	BIL 900 kV	Тар Ү
Class	Year 1970	Drawing	
Style	Other	S.O. Number	
Physical Dimensions			
Creep Distance *	Overall Length *	inner Seal Dia. *	Eff. Gnd Sleeve *
Total Weight	Recess Depth *	Outer Seal Dia. *	Slot Size *
Units			
Flange Dimensions			
To Bottom *	# Bolts *	Max. Diameters	Draw Lead
To Top *	Bolt Size *	Below Flange *	Tube ID *
	Circle Diameter *	Above Flange *	To Pin *

Overall Tests

Energize	Bus Ft	!ns.#	Ph.	Test kV	mA	Watts	% PF Corr.	Corr Fctr	Cap (pF)	TLI	FRANK™	Manual
1	0	0	A	10.010	2.612	0.085	0.31€	0.968	692.769	*	Good	Good
2	Ð	0	А	10.009	2.621	0,127	0.468	0.968	695.289	•	Good	Good
3	D	0	В	10.010	2.628	0.099	0.364	0.968	697.060	•	Good	Good
4	O.	0	₿	10.008	2.625	0.101	0.373	0.968	696.345	*	Good	Good
5	Ů.	0	C	10.004	2.654	0.116	0.422	0.968	703,901		Good	Good
ß	0	O	C	10,003	2.659	0.164	0.597	0.968	705.354	•	Good	Good
1 or 2	0	0	Α	10.004	5.089	0.277	0.528	0.968	1349,821	0.065	Deteriorat ed	Good
3 or 4	O	0	8	10.009	5.101	0.242	0.460	0.968	1353.003	0.042	Good	Good
5 or 6	0	0	С	10.011	5.165	0.308	0,578	0.968	1369,993	0.029	Good	Good

LSR	mA: 2.812/2.612, 1/1	Watts: 0.085/0.085, 1/1	Cap (pF): 692,769/692,769, 1/1
L8R	mA: 2.621/2.621, 1/1	Watte: 0.127/0.127, 1/1	Cap (pF): 695.289/695.289, 1/1
LSR	mA: 2.629/2.628, 1/1	Watts: 0.099/0.099, 1/1	Cap (pF): 697,060/697,060, 1/1
LSR	mA: 2.625/2.625, 1/1	Watts: 0.101/0.101, 1/1	Cap (pF): 696.345/696.345, 1/1
L\$R	mA: 2.654/2.654, 1/1	Watts: 0.116/0.116, 1/1	Cap (pF): 703,901/703,901, 1/1
LSR	mA: 2,659/2,669, 1/1	Watts: 0.164/0.164, 1/1	Cap (pF): 705.364/705.364, 1/1
L\$R	mA: 5.089/5.089, 1/1	Watts: 0.277/0.277, 1/1	Cap (pF): 1349.821/1349.821, 1/1
LSR	mA: 5.101/5.101, 1/1	Walls: 0.242/0.242, 1/1	Cap (pF): 1353.003/1353.003, 1/1
LSR	mA: 5.165/5.165, 1/1	Watts: 0.308/0.308, 1/1	Cap (pF): 1369.993/1369.993, 1/1

FRANK™ Message

7 (Deteriorated) - According to the general TLI enalysis the calculated TLI is slightly higher than normal. Doble recommends the breaker be releasted on a more frequent basis. Increasing TLI's usually indicate deterioration in either the lift-rod, tank oil, and auxillary contact support insulation. Please Note: There is limited information to rate this test. Since there are no previous tests or limits for this breaker, a general TLI enalysis was applied. The general TLI analysis may not apply for all breakers. If this is the first test, the identification Panel must be reviewed carefully to ensure that all of the required fields are present. The required fields are Manufacturer, Breaker Type, Bushing Nameplate, and kV Rating. Once this information is filled in, use the F9 key to recalculate the ratings for this breaker. Contact your supervisor or Doble Engineer if further analysis is required.

(Header)

Insulation Resistance

Manufacturer					
Serial Number					
Voltage '					
	Volts	T1	T2	PI	Manual
Open Breaker Tests					
Bushing 1	•	•	*	•	
Bushing 2	•	•	•	•	
B⊭şhing 3	•	•	•	*	
Bushing 4	•	•	*	•	
Busining 5	•	•	*	•	
Bushing 6	•	•	3	*	
Closed Breaker Tests					
A	*	*	•	•	
. в	•	•	•	•	
l c	*	•	•	•	

Insulating Fluid Tests

Sample Location	Deg C	Test kV	mA	Watts	% PF Corr.	Corr Fetr	FRANKIII	Manuel
T;<#1	35	10.010	0.902	0.014	0.077	0.508		Good
TK#2	35	10.003	0.902	0.014	0.078	0.508		Good
TK#3	35	10.002	0.902	0.014	0.079	0.508		Good

Contact Resistance

Manufacturer	MEGGER		
;Serial			
Amps	100		
		Contact Res. (uOhms)	Manual
Closed Breaker T	ests		
	A	487	
	В	274	•
	Ç	488	

Oil Quality Tests

	Color	Sp. Gravity	ASTM- D1816	ASTM- D877	%₽F @25°C	%₽F @100°C	Water Content	Neutral #	IFT	Total Parts/10ml
Tank1	1.5		•	29.4	•	•	٠	*	•	+
Tank2	1.5	•	•	28.5	•	*	*	•	٠	*
Tank3	1.5	•	*	27.9	*	<u> </u>			<u> </u>	

Report Source

OilCircuitBreaker

Session Test Date

10/1/2016 8:04:13 AM

Nameplate - Oil Circuit Breaker

Company	P.R.E.P.A.	Serial Number	41-30125-1085	
Location	souco	Special ID	091-000-000-007	
Division	GEN;C.E.P.S.E.	Circuit Designation	O.C.B.#0082 T	
Manufacturer	I.T.E.	Тура	230-KM-20000-20	
Year Manufactured	1970	Class	OliClrcuitBreaker	
Mfr Location	U.S.A.	Mechanism Type	P-45A	
Interrupting Rating	43.0 kA	BIL	900 kV	
Oli Volume	1960.0 UG	Interrupting Rating	43.0 kA	
# of Tanks	3	Counter		
Control Volts	125	Amps	2000	
kV	242			

Administration

Test Date	10/1/2016	Test Time:	8:04 AM	Weather	Sunny
Air Temperature	35°C	Apparatus Temperature	37°C	Humidity	100 %
Tester	R.DIAZ	Work Order	8	Date Last Tested	
Verified		Test Set Type	M4000	Date Retested	į
Verification Date	10/1/2016	Set Top Serial#		Reason	BRKR MAINT.
Last Sheet #		Set Bottom Serial	#	Travel Time	<u> </u>
Purchase Order		ins, Book#		Duration	
Copies		Sheet #		Crew Size	3

Bushing Nameplate

Designation	Seriaí #	Manufacturer	Туре	C1 %PF	C1 Cap	C2 %PF	Ç2 Cap	Rated kV	Amps
1	1687361	General Efectric	Ų	0.27	459	•	4223	146	2000
2	1687345	General Electric	U	0.25	453	•	4282	146	2000
3	1080334	General Electric	ป	0.26	460	•	4285	146	2000
4	1686332	General Electric	υ	0.25	458	•	4552	146	2000
5	1686333	General Electric	บ	0.25	459	*	4235	146	2000
6	1686329	General Electric	U	0.26	457		4408	146	2000

Bushing Additional Details -1

Designation 1	Voltage	Serial #	1687361	
0-1-1				
Catalog #	Amps 2000 A	BIL	300 KV	Тар Ү
Class	Year 1970	Drawing		
Style	Other	S.O. Number		
Physical Dimensions				
Creep Distance *	Overall Length *	Inner Seal Dia.	*	Eff. Gnd Sleeve *
Total Weight *	Recess Depth *	Outer Seal Dia.	•	Slot Size *
Units				
Flange Dimensions				
To Bottom *	# Bolts *	Max. Diamets	ırs	Draw Lead
То Тор *	Bolt Size *	Below Flange	•	* QI eduT
	Circle Diameter *	Above Flange	•	To Pin *

Designation 2	Voltage	Serial # 1687345	
Catalog #	Amps 2000 A	BIL 900 kV	Tap Y
Class	Year 1970	Drawing	
Style	Other	S.O. Number	
Physical Dimensions			
Creep Distance *	Overall Length 1	Inner Seal Dia. *	Eff. Gnd Sleeve *
Total Weight *	Recess Depth *	Outer Seal Dia. *	Slot Size *
Units			
Flange Dimensions			
To Bottom *	# Bolts *	Max. Diameters	Draw Lead
To Top *	Bolt Size *	Below Flange *	Tube ID *
	Circle Diameter *	Above Flange *	To Pin ⁺

Bushing Additional Details -3

Designation 3	Voltage	Serial # 1686334	
Catalog #	Amps 2000 A	BIL 900 kV	Тар Ү
Class	Year 1970	Orawing	
Siyla	Other	S.O. Number	
hysical Dimensions			=rt 6 .101 t
Greep Distance	Overall Length *	Inner Seal Dla. *	Eff. Gnd Sleeve *
Total Weight *	Recess Depth *	Outer Seal Dia. *	Slot Size *
Units			
Flange Dimensions			
To Bottom *	# Bolts *	Max. Diameters	Draw Lead
To Top *	Bolt Size *	Below Flange *	Tube ID *
	Circle Diameter *	Above Flange *	To Pin. *

Busining additional season .			· · · · · · · · · · · · · · · · · · ·
Designation 4	Voltage	Serial # 1666332	
Catalog #	Amps 2000 A	BJL 900 kV	Тар Ү
Class	Year 1970	Drawing	
Style	Olher	S.O. Number	
Physical Dimensions			
Cresp Distance *	Overall Length *	Inner Seal Dia. *	Eff. Gnd Sleeve *
Total Weight *	Recess Depth *	Outer Seal Dia. *	Slot Size *
Units			
 Flange Dimensions			
To Bottom *	#Bolts *	Max. Diameters	Draw Lead
To Top *	Bolt Size *	Below Flange *	Tube ID *
,	Circle Diameter *	Above Flange *	To Pin *

Bushing Additional Details -5

Designation 5	Voltage	Serial # 1686333	
Catalog #	Amps 2000 A	BBL 900 kV	Тар Ү
Class	Year 1970	Drawing	
Style	Other	S.O. Number	
Physical Dimensions			
Creep Distance *	Overall Length *	inner Seal Dia. *	Eff. Gnd Sleeve *
Total Weight *	Recess Depth *	Outer Seal Dia. *	Slot Size *
Units			
Flange Dimensions			
To Bottom *	#Bolts *	Max. Diameters	Draw Lead
То Тор *	Bolt Size *	Below Flange *	Tube ID *
	Circle Diameter *	Above Flange *	To Pin '

Designation 6	Voltage	Serial # 1686329	
Catalog #	Amps 2000 A	BJL 900 kV	Tap Y
Class	Year 1970	Drawing	
Style	Other	S.O. Number	
Physical Dimensions			
Creep Distance *	Overall Length *	Inner Seal Dia. *	Eff. Gnd Sleeve *
Total Weight *	Recess Depth *	Outer Seal Dia. *	Slot Size *
Units			
Flange Dimensions			
To Bottom *	#Bolts *	Max. Diameters	Draw Lead
Ta Top *	Bolt Size *	Below Flange *	Tube ID *
	Circle Diameter *	Above Flange *	To Pin *

Overall Tests

Energize	Bus Ft	lns.#	Ph.	Test kV	mA	Watts	% PF Corr.	Corr Fetr	Cap (pF)	TLi	FRANKIN	Manual
1	O	0	Α	10,002	2.623	0.124	0.453	0.980	695.844	*	Good .	Good
2	0	0	Λ	10.002	2.652	0.189	0.685	0.960	703.504	•	Good	Good
3	0	D	В	10.002	2.621	0.130	0.477	0.960	695.321	٠	Good	Good
4	0	0	В	10.002	2.630	0.146	0.532	0.960	697.755	•	Good	Good
5	0	o	c	10.002	2.663	0.140	0.504	0.960	706.290	*	Good	Good
6	0	0	С	10,001	2.650	0.181	0.656	0.960	702.941	*	Good	Good
1 or 2	0	0	А	10.002	5.094	0,287	0.541	0.960	1351.139	-0.026	Good	Good
3 or 4	0	0	В	10.000	5.105	0.255	0.479	0.960	1354.179	-0.021	Good	Good
5 or 6	0	0	C	10,002	5.166	0.283	0.525	0.960	1370.304	-0.038	Good	Good

LSR	mA: 2.623/2.623, 1/1	Watts: 0.124/0.124, 1/1	Cap (pF): 695.844/695.844, 1/1
LSR	mA: 2.652/2.652, 1/1	Watts: 0.189/0.189, 1/1	Cap (pF): 703.504/703.504, 1/1
LSR	mA: 2.621/2.621, 1/1	Watts: 0.130/0.130, 1/1	Cap (pF): 695,321/695,321, 1/1
LSR	mA: 2.630/2.630, 1/1	Watts; 0.146/0.146, 1/1	Cap (pF): 697.755/697.755, 1/1
LSR	mA: 2.663/2.663, 1/1	Watts: 0.140/0.140, 1/1	Cap (pF): 706.290/706.290, 1/1
LSR	mA: 2.650/2.650, 1/1	Watts: 0.181/0.181, 1/1	Cap (pF): 702.941/702.941, 1/1
LSR	mA: 5.094/5.094, 1/1	Watts: 0.287/0.287, 1/1	Cap (pF): 1351.139/1351.139, 1/1
LSR	mA: 5,105/5,105, 1/1	Watts: 0.265/0.255, 1/1	Cap (pF): 1354.179/1354.179, 1/1
LSR	mA: 5.168/5.166, 1/1	Watts: 0.283/0.283, 1/1	Cap (pF): 1370.304/1370.304, 1/1

Bushing C1

	•										
ID.	Serial #	NP %PF	NP Cap	Test kV	mA	Watts	% PF Corr.	Corr Fctr	Cap(pF)	FRANK™	Manual
1	1687361	0.27	459	10.002	1.726	0.073	0.405	0.960	457.829	Good	Good
2	1687345	0.25	453	10.002	1.699	0.104	0.588	0.960	450,621	Investigate	Good
3	1686334	0.26	460	10.000	1.731	0.070	0.390	0.960	459.160	Good	Good
4	1686332	0.25	458	10.001	1,721	0.064	0.467	0.960	456.412	Doteriorated	Good
5	1686333	0.25	459	10.003	1.722	0.062	0.345	0.980	456.698	Good	Good
6	1686329	0.26	457	10.002	1.709	0.071	0.401	0.960	453.232	Good	Good

LSR	mA: 1.726/1.726, 1/1	Wetts: 0.073/0.073, 1/1	Cap (pF): 457.829/457.829, 1/1
LSR	mA: 1.699/1.699, 1/1	Watts: 0.104/0.104, 1/1	Cap (pF): 450.621/450.621, 1/1
LSR	mA: 1.731/1.731, 1/1	Watts: 0.070/0.070, 1/1	Cap (pF): 459.160/459.160, 1/1
LSR	mA: 1,721/1,721, 1/1	Watts: 0.084/0.084, 1/1	Cap (pF): 456.412/456.412, 1/1
LSR	mA: 1.722/1.722, 1/1	Watts: 0.062/0.062, 1/1	Cap (pF): 456,698/456.698, 1/1
LSR	mA: 1.709/1.709, 1/1	Watts: 0.071/0.071, 1/1	Cap (pF): 453.232/453.232, 1/1
FRANK™ Message	2 (Investigate) - Power Factor is high comp	pared to Nameplate.	

Power Factor is high compared to limit.

4 (Deteriorated) - Power Factor is high compared to Nameplate.

Bushing C2

ID	Serial #	NP %PF	NP Cap	Test kV	mA	Watts	%PF Corr.	Corr Fetr	Cap(pF)	FRANK™	Manual
1	1687361	•	4223	2.000	15.922	0.552	0.347	i	4223.475	Good	Good
2	1687345	•	4282	2.000	16.167	0.680	0.421	1	4288.255	Good	Good
3	1686334	•	4285	2.000	16.13D	0.650	0.403	1	4278.577	Good	Good
4	1686332	•	4552	2,000	16,010	0.607	0.504	1	4246.592	Deteriorated	Good
5	1686333	•	4235	2.000	16.303	0.821	0.504	1	4324.457	Good	Good
6	1686329	•	4408	2.000	16.601	0.922	0.556	1	4403,386	Good	Good

FRANK™ Message	4 (Deteriorated) - Capacitance is low compa	<u>'</u>	
LSR	mA: 16.801/16.601, 1/1	Watts: 0.922/0.922, 1/1	Cap (pF): 4403,386/4403,386, 1/1
LSR	mA: 16.303/16.303, 1/1	Watts: 0.821/0.821, 1/1	Cap (pF): 4324.457/4324.457, 1/1
LSR	mA: 16.010/16.010, 1/1	Watts: 0.807/0.807, 1/1	Cap (pF): 4246.592/4246.592, 1/1
LSR	mA: 16.130/16.130, 1/1	Watts: 0.650/0.650, 1/1	Cap (pF): 4278,577/4278,577, 1/1
LSR	mA: 16.167/16.167, 1/1	Watts: 0.680/0.680, 1/1	Cap (pF): 4288.255/4288.255, 1/1
LSR	mA: 15.922/15.922, 1/1	Waus: 0.552/0.552, 1/1	Cap (pF): 4223.475/4223.475, 1/1

Insulation Resistance

Manufacturer					
Serial Number					
Voitage *					
	Voits	T1	T2	PI	Manual
Open Breaker Tests					į
Bushing 1	*	•	*	•	
Bushing 2	•	•	•	•	
Bushing 3	•	•	*	A	
Bushing 4	s	*	*	*	
Bushing 5	•	*	*	*	
Bushing 6	*	*	•	*	j
Closed Breaker Tests					j
A	•		•	*	;
В	•	•	•	•	
C	•	· · · · · · · · · · · · · · · · · · ·	.		

Insulating Fluid Tests

	- ·			_					
	Sample Location	Dag C	Test kV	mA	Walts	% PF Corr.	Corr Fetr	FRANK™	Manual
	TK#1	35	10.002	0.901	0.012	0.068	0.508		Good
-	TK#2	35	10.001	0.901	0.013	0.073	0.508		Good
İ	TK#3	35	10.001	0.901	0.013	0.073	0.508		Good

Contact Resistance

				_
Manufacturer	MEGGER			
Serial				
Amps	100			
		Contact Res. (uOhms)	Manual	
Closed Breaker T	ests			
	Α	949		
	В	2047		
	C	1067		

Oil Quality Tests

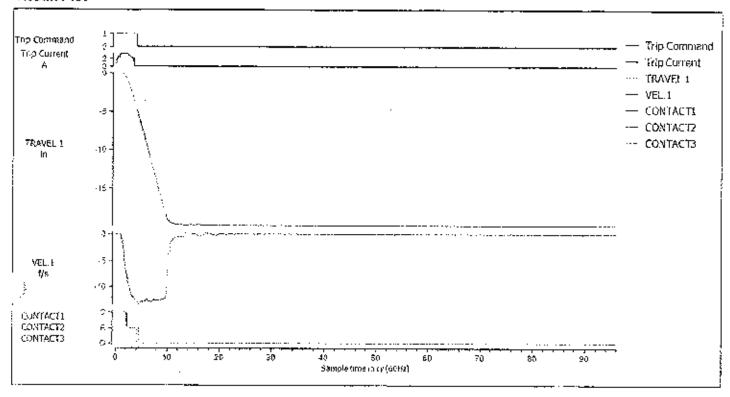
į

	Color	Sp. Gravity	ASTM- D1816	ASTM- D877	%PF @25°C	%PF @100°C	Water Content	Neutral #	1FT	Total Parts/10m/
Tank1	1.5	*	•	24.2	•	*	•	•	•	•
Tank2	1.5	•	•	23.5	•	•		• .	•	*
Tank3	1.5	•	*	22.8	•	•		•		· · · · · · · · · · · · · · · · · · ·

T-Doble Test Details Report

Nameplate

Туре	Oil Breaker	Description	O.C.B.	
Manufacturer	I.T.E.	Circuit Number	0082-T	
Model no. 230-KM-20000-20		Machanism Type	PA-45A	
Company P.R.E.P.A.		Mechanism Book no.		
Location	SOUCO	Instruction Book no.		
Division	Gen;C.E.P.S.E,	Operation Counter		
Serial no.	41-30125-1085	Line Frequency	60 Hz	
Special ID	091-000-000-007	Operator	R.DIAZ	
		<gustom 1="" label=""></gustom>		
		<pre><custom 2="" label=""></custom></pre>		
Plan Type	Test Result	Test Run	Oct 2, 2016 14:42:27	
•	instrument Details:	Instrument Model	TDR 900	
		Serial Number		
		Calibrated		


Main Contact Results: Trip

Mai	n Contact Timing					Synchronization	-	
	Channel	Label	Phase	Time	Status		In E	3reaker
	OCB-A	CONTACT1	Phase A	2112.00 cy	Pass		252.00 CV	No stalus
}	OCB-B	CONTACT2	Phase B	2316.00 cy	Pess		c,	
Ĺ,	OCB-C	CONTACT3	Phase C	2064.00 cy	Pass			

Motion Measurements

Velocity			Travel					
Channel		Zone 1	Zone 2	Total Travel	Overtravel	Rebound	Contact Wipe	Damping
Motion-1	Zone Type	Distance; Distance	Distance; Distance				•	
(TRAVEL 1)	Measured	3.206 m/s		19.880 in	0.016 ln	0.056 in		3546.00 cv
Phase Undefined	Limite - Max	3.658 m/s	3.658 m/s	20,750 in	0.500 in	0.500 in		•
L	Limits - Min	3.048 m/s	<u> </u>	19.250 in	0.000 in	0.000 in		

Result Plot

Breaker Test Details

	- · · · · · · - · · · · · · · · · · · ·			 	
Test Style	OCB	Include Resistors	NO		

Main Contact Channel Setup

Channel	Enable	Label	Phase	" '
OCB-A	YES	CONTACT1	Phase A	
OCB-B	YÉS	CONTACT2	Phase B	
OCB-C	YES	CONTACT3	Phase C	

Fitename

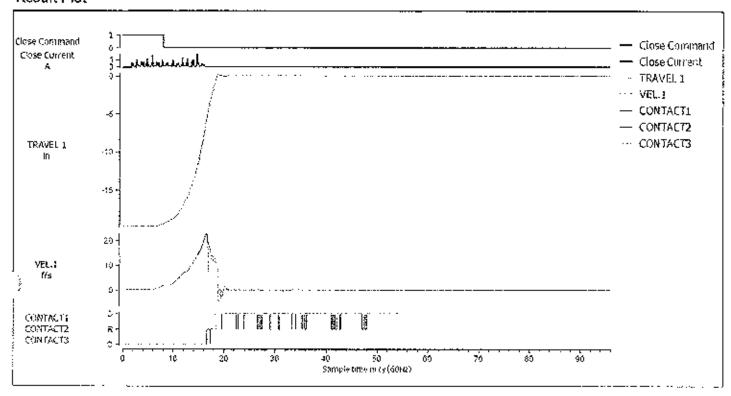
ENO.C.B.#0082-T SOUCO\091-000-000-007_10-2-2016_144227_Trip.tdrx

. }

T-Doble Test Details Report

lameplate

Туре	Oll Breaker	Description	O,C.B.
Manufacturer	I.T.E.	Circuit Number	00 62- T
Model no.	230-KM-20000-20	Mechanism Type	PA-45A
Company	P.R.E.P.A.	Mechanism Book no.	
Location	SOUCO	Instruction Sock no.	
Division	Gen;C.E.P.S.E.	Operation Counter	
Serial no.	41-30125-1085	Line Frequency	60 Hz
Special ID	091-000-000-007	Operator	R.DIAZ
		<custom 1="" label=""></custom>	
		<pre><custom 2="" label=""></custom></pre>	
Plan Type	Test Result	Test Run	Oct 2, 2016 14:56:58
	Instrument Details:	Instrument Model	TDR 900
		Serial Number	
		Calibrated	


Main Contact Results: Close

Main Contact Timing	7				Synchronization
Channel	Label	Phase	Time	Status	In Breaker
OC8-A	CONTACT1	Phase A	18378.00 cy	Pass	66.00 cy. No status
CC8-8	CONTACT2	Phạse B	18330.00 cy	Pass	
OCB-C	CONTACT3	Phase C	18396.00 cy	Pass	

Motion Measurements

	Velocity					Travel		
Channel		Zone 1	Zane 2	Total Travel	Overtravel	Rebound	Contact Wipe	Damping
Motion-1	Zone Type	Distance; Distance	Distance; Distance					
(TRAVEL 1)	Measured	4.069 m/s		19.874 in	0.292 ln	0.062 ln	0.662 ln	
Phase Undefined	Limits - Max	4.420 m/s	4.420 m/s	20.750 in	0.375 ln	0.25Q Jn	1,000 ln	
	Limits - Min	3.658 m/s		19,250 in	0.000 in	0.000 ln	0.500 in	

Result Plot

Breaker Test Details

		· · · ·		
Test Style	OCB	Include Resistors	NO	:

Main Contact Channel Setup

	Channel	Enable	Label	Phase	
	OCB-A	YES	CONTACT1	Phase A	
,	QCB-B	YES	CONTACT2	Phase B	
<u> </u>	OCB-C	YES	CONTACT3	Phase C	

Filename E:\O.C.B.#0082-T SOUCO\091-600-000-007_10-2-2016_145658_Close.tdrx

Costa Sur Steam Plant Transmission Center 230kV OCB-0082 Maintenance Record -- 2020

AEE 015.4-55 REV. 6/81

PUERTO RICO ELECTRIC POWER AUTHORITY

SUBSTATION MAINTENANCE AND INSPECTION REPORT

20 00 CE

		EQUIPMENT CODE	09	1-00-00-07	/
	A.D.				:
JOB NO	S.D.		5, 7 / MARZO		
200/11/01/	ENTRAL COSTA SUR	DISPATHER ORDER		11 @ 1	5
EQUIPMENT	OCB 0082	MANUFACTURER		T.E.	
REQUISTED BY	ING, EDDIE W. RIVERA	EQUIPMENT S.N.		25-1085	
WORK TO BE PERFORMED	CONSERVACIÓN	SCHEDULE)	ÆS 🗓	МО	
EQUIPO FUERA DE SEF	RVICIO PARA CONSERVACIÓN C	ON SUS AUXILIARES		MAN-HOUF	₹\$
ABIERTOS, UNIDAD 5 F	UERA DE SERVICIO A CONSECU	ENCIA DE TERREMOTO.			
					ł. REGS.
SE PROBÓ EL ÁREA DE	TRABAJO SIN VOLTAJE Y SE IN	STALARON TIERRAS.			I. EXTRAS
				127.5	1. TOTAL
SE DESCONECTARON	LOS CONECTORES EN LA PART	E SUPERIOR DE LOS			····
	'ARON LAS BARRAS Y SE AISLAF	RON UTILIZANDO MANTAS	<u>. </u>		
LAS BARRAS NO SE RE	TIRARÓN.	·····		, , <u>, , , , , , , , , , , , , , , , , </u>	 .
SE LIMPIARON LOS BU	SHINGS CON COLLINITE.				
		L DUDUNICO (04 B 60)			
SE REALIZARON PRUE	BAS PRELIMINARES DE OVERAL	L, BUSHINGS (C1 & C2).		 	·
CONTACT RESISTANCE	EY ACEITES (PF), SE OBTUVIER	ON RESULTADOS			
	IUNTO SE INCLUYE COPIA DE LO	OS MISMOS.	<u></u>		
	E PRELIMINAR (MICRO-OHMS)				
POLO 1 = 699, POLO 2	= 2112, POLO 3 = 581	<u>,</u>			
	IZADO POR SUP, GERALD VERA				
MOMENTO, ING. ARNA	LDO NAZARIO CONTINUÓ LOS T	RABAJOS.			
				····-	····
OF OFALIZA CONSCIO	/ACIÓN A CADA UNO DE LOS TAI	MOUES			.,,
SE REALIZO CONSERV	AGION A CADA DINO DE LOS TAI				
TANQUE 1					
	EITE Y SE RECIRCULÓ EN EL TA			··- ·-·,	
	INCIPAL DEL TANQUE. SE ENCO				
	DIÓ UN FLUSH AL TANQUE Y TO	DOS LOS COMPONENTES			
	E LIMPIO Y A PRESIÓN.				····
SE ENCONTRÓ CANTIL	DAD CONSIDERABL E DE CARBO	N EN EL INTERIOR DEL		··	
	RON PAMPERS A TODO EL INTER	RIOR DEL TANQUE Y PAÑ	os		\$ 2,577.47
LIMPIOS A TODOS LOS	COMPONENTES INTERNOS.			Extra:	\$ 847.17
				Dietas:	\$ 192.00
		Beneficios Marginales		*Total:	\$ 3,616.64
R. DIAZ, J. ORTIZ, J. R	RAMÍREZ	Ca	ld fair	Mah	tuse
L. FELICIANO, L. ROD	RÍGUEZ 7/MARZO13	2020 ING.	ARNÁ∬DO N	AZARIO I	MATTEL

DATE

WORK PERFORMED BY

SUPERVISOR

AEE 015.4-55 REV. 6/81

PUERTO RICO ELECTRIC POWER AUTHORITY

SUBSTATION MAINTENANCE AND INSPECTION REPORT

|--|

		EQUIPMENT CODE		091-00-00	-07	
	A.D.					
JOB NO.	s.p.	DATE 3 -	5,7/MAR2	20 / 2020		
	ENTRAL COSTA SUR	DISPATHER ORDER	NO.	11 @	15	
EQUIPMENT	QCB 0082	MANUFACTURER		1.T.E.		
REQUISTED BY	ING, EODIE W. RIVERA	EQUIPMENT S.N.	41-3	0125-1085		
WORK TO BE PERFORMED	CONSERVACIÓN	SCHEDULE	YES	X NO		
SE REMOVIERON LOS!"	UPPER & LOWER SHIELDS" Y LA	S RESISTENCIAS, SE		MAN- HO	URS	
	E PAÑOS LIMPIOS PARA REMOV		os		•	
	STENCIAS SE MIDIERON Y SE AP			95	H. REG	S.
	S CÁMARAS INTERRUPTIVAS ("I	· · · · · · · · · · · · · · · · · · ·		32.5	H. EXT	RAS
	SACARON DEL TANQUE Y SE LI			127.5	Н. ТОТ	AL
	RON TODOS SUS COMPONENTE					
	S ESTACIONARIOS BAJOS E INT					
	SEMBLY", SE PULIERON LOS CO		· · · · · ·			
	RITE" INCLUYENDO SUS ROMPE		MA			
	NTACTOS MOVIBLES. SE ROTAR					
	RA MEJOR OPERACIÓN. EN EL IN		Ē			
	N LOS CONTACTOS FIJOS EN LO					
	LOS MOVIBLES DEL "CROSSBAI					
	ONAMIENTO DEL DASHPOT. SE		}			
	EL FABRICANTE, SE NORMALIZA		•		,	
	OS Y REACONDICIONADOS. SE IN		TE.		*	
	UPTIVAS, LAS RESISTENCIAS Y					
	SE LLENO EL TANQUE CON EL A					
TANOUE 2 Y TANOUE 3	SE LE REALIZÓ LA MISMA CONS	SERVACIÓN QUE LA				
	LOS CONTACTOS FIJOS Y MOV		N			
	ITE DE CADA TANQUE SE RECIP				<u>-</u> .	
5 HORAS CADA UNO.					• • •	
V (V (V (V (V (V (V (V (V (V (•	
SELLENARON TODOS	LOS UST TAPS CON ACEITE NUE	VO Y LIMPIO.			,	
oc elementor robot						
		· · · · · · · · · · · · · · · · · · ·				
		,			· ····· -	
				Regular	\$ 2,57	77,47
				Extra	· ·	47.17
······································				Dietas:		92,00
· · · · · · · · · · · · · · · · · · ·	*incluve	Beneficios Marginales		*Total		16.64
R. DIAZ, J. ORTIZ, J. R.			201 2	and Th	12/1	
L. FELICIANO, L. RODI		120 ING.	ARNALDO		MATTE	1

7 / MARZO / 2020

SUPERVISOR

WORK PERFORMED BY

DATE

AEE 015.4-55 , REV. 6/81

PUERTO RICO ELECTRIC POWER AUTHORITY

SUBSTATION MAINTENANCE AND INSPECTION REPORT

		EQUII	PMENT CODE	·····	091-00-00	-07
	A.D.		 			
JOB NO.	S.D.	DATE			ARZO / 2020	
LOCATION CEN	ITRAL COSTA SUR		ATHER ORDER	NO.	11 @	15
EQUIPMENT	OCB 0082	• •	JFACTURER		J.T.E.	
REQUISTED BY	ING. EDDIE W. RIVERA	EQUI	PMENT S.N.		41-3D125-1085	
WORK TO BE PERFORMED	CONSERVACIÓN	SCHE	DULE	YES	X NO	
MEDIDAS RECOMENDADA	S POR EL FABRICANTE:	-,			MAN- HO	URŠ
	TANQUE 1	TANQUE 2	TANQUE 3			
TRAVEL	19 3/4"	19 7/8"	19 7/8"		95	H. REGS.
CONTACT WIPE	1/2"	13/16"	1/2"		32.5	H. EXTRAS
DASHPOT	OK	OK	ÓК		127.5	H. TOTAL
DASHPOT OIL LEVEL	2 5/8"	2 11/16"	2 1/2"	4.4		
DIMENSIÓN "L"	3 1/8"	3 3/16"	3 1/8"			
DIMENSIÓN "T"	3/16", 3/16"	5/32", 1/4"	5/32°, 5/3			
DIMENSIÓN "D"	3 1/2", 3 7/16"	3 1/2", 3 1/2"	3 1/2", 3 1/2			· · · · · · · · · · · · · · · · · · ·
RESISTENCIA (K-OHMS)	1,855, 1.846	1.901, 1.794	1.812, 1.906	3		
CONT. RESISTANCE (INTE	RNO) 198	314	165 (μ-0	HMS)		
NIVEL DE ACEITE	ОК	OK	OK			<u> </u>
,						. <u> </u>
*** SE AJUSTÓ AL VALOR !	QUE APARECE EN LA TAI	BLA (MEDIDA I	STABA EN 3")		<u> </u>	<u> </u>
SE REALIZARON PRUEBA			SISTANCE,			
Y ACEITES OBTENIENDO I	RESULTADOS SATISFAC	TORIOS.				
CONTACT RESISTANCE F	INAL (MICRO-OHMS)					· .
POLO 1 = 556, POLO 2 =95	6, POLO 3 = 605		<u></u>		<u>_</u>	
NOTA: PROBLEMAS DE LA	PRUEBAEN POLO 2 ES I	EXTERNO. AL	CALEL POTO			
	CONECTAR SE VERIFICAI	RA CONECTO	KENEL "STOO	<u> </u>		· · · · · · · · · · · · · · · · · · ·
PRUEBA INTERN	NA FUÉ SATISFACTORIA.				 -	
				······		·····
- PRUEBA BREAKDOWN A	CEITES:		, ,, 1.			
TANQUE 1 - 28.2 KV						
TANQUE 2 - 24.8 KV		··· ·· · · · · · · · · · · · · · · · ·				
TANQUE 3 - 26.6 KV		··· · - · · · · · ·				
					Regula	r: \$ 2,577.47
<u> </u>		<u></u>			Extr	a: \$ 847.17
					Dietas	
	*Inc	cluve Beneficios	Marginales		*Tota	il: \$ 3,616.64

R. DIAZ, J. ORTIZ, J. RAMÍREZ L. FELICIANO, L. RODRÍGUEZ WORK PERFORMED BY

7/MARZO/2020 DATE

ING. ARNALDO NAZARIO MATTEI SUPERVISOR

AEE 015.4-55 REV. 6/81

PUERTO RICO ELECTRIC POWER AUTHORITY

SUBSTATION MAINTENANCE AND INSPECTION REPORT

|--|

		EQUIPMENT CODE	091-00-00-07
~E3F.	A.D.	<u></u>	
JOB NO.	\$.D. 🗖	DATE 3 - 5,	7 / MARZO / 2020
LOCATION	CENTRAL COSTA SUR	DISPATHER ORDER N	0. 11@15
EQUIPMENT	OCB 0082	MANUFACTURER	1, T.E.
REQUISTED BY	ING. EDDIE W. RIVERA	EQUIPMENT S.N.	41-30125-1085
WORK TO BE PERFORME	D CONSERVACIÓN	SCHEDULE YE	S X NO
SEPROCEDE A REAL	LIZAR PRUEBAS DE VELOCIDAD. SE	REALIZÓ PRUEBA DE	MAN-HOURS
CLOSE Y DE TRIP O	BTENIENDO RESULTADOS SATISFA	CTORIOS.	
ADJUNTO SE INCLU	YE COPIA DE LAS MISMAS.		95 H. REGS.
			32.5 H. EXTRAS
SE RECONECTA NU	EVAMENET EQUIPO AL SISTEMA. SI	E LE DIÓ LIMPIEZA A LOS	127.5 H. TOTAL
PUNTOS DE CONEX	IÓN.	·	
	TIEDDAÓ		
SE REMUEVEN LAS	HERRAS.		
SE LIMPIA EL ÁREA	DE TRABAJO, SE ENTREGA EQUIPO	DISPONIBLE PARA	
SERVICIO.			
NO SE PUDO VERIF	ICAR OPERACIÓN REMOTA DEL BRI	EAKER YA QUE EL	
	A DE UNIDAD Y NO TENÍA CONDICIO		
ESTABA FUERA DE	SERVICIO.		
	· - · · · · · · · · · · · · · · · · · ·		
	<u> </u>		
		······································	
		, ,,,	
	-	······································	
			Regular: \$ 2,577.47
			Extra: \$ 847.17
			Dietas: \$ 192.00
	*Incluye	Beneficios Marginales	*Total: \$ 3,616.64
			and the second of the second o

R. DIAZ, J. ORTIZ, J. RAMÍREZ L. FELICIANO, L. RODRÍGUEZ WORK PERFORMED BY

7/MARZO / 2020 DATE

ING. ARNALDO NAZARIO MATTEL

SUPERVISOR

AEE 015.4-55 REV. 6/81

PUERTO RICO ELECTRIC POWER AUTHORITY

WORK PERFORMED BY

SUBSTATION MAINTENANCE AND INSPECTION REPORT

						EQUIPMENT	CODE		091-00-00)- 0 7 -
100 NO			A.D. S.D.	\overline{A}^-		DATE	4 . ft	7/8/	IARZO / 2020	
JOB NO.	OENTON	COCTA OI		L				, 1114	11 @ 15	
LOCATION	CENTRAL COSTA SUR OCB 0082			_				LT.E.	·	
EQUIPMENT		EDDIË W. F	DI (COA	_		MANUFACTÜRER EQUIPMENT S.N.		41-30125-1085		0.E
REQUISTED BY			•	- .		£QQIPINIENT (
WORK TO BE PERFO	DRMED	. C	ONSERVA	CIÓN	· · · · · · · · · · · · · · · · · · ·	SCHEDULE			YESX	NO L
			INFO	RME	DE GAS	TOS				
			·	_				···		
€MPLEADO	SAL	ARIO	HORAS REG		совто с	ON B.M.	HORAS EXTRAS		COSTO CO	N B.M.
	<u> </u>			_		*****				0.00
A. NAZARIO	\$	22.13	19	\$		668.55	3.5	\$		85.98
R. DIAZ	\$	19.98	19	\$	<i></i>	602.99	6.5	\$		216.02
J, ORTIZ	. \$	19.21	11.5	\$		351.25	. 5	\$_		159.92
L, FELICIANO	\$	13.27	19	\$		400.89	6.5	\$		143.61
J. RAMÉREZ	\$	13.03	19	\$		393.64	6.5	\$		141,02
L. RODRÍGUEZ	\$	13.43	7.5	\$		160.15	4.5	\$		100.62
		· · · · ·	<u> </u>							
T	DTAL		95.00	\$		2,577.47	32.50	\$		847.17
EMPLEADO	NÚM. EM	PLEADO	Ď	ETA	5					
A. NAZARIO	230	462	\$		32.00		∓otai =	\$	3,616.64	
R. DIAZ		431	\$	• • • • •	32.00		,	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
J. ORTIZ	120	392	\$		32.00					
L. FELICIANO	237	722	\$		32.00					
J. RAMÍREZ	24	130	\$		32.00		NOTA:			
L. RODRIGUEZ	239	950	\$		32.00					
···· -										
			<u> </u>							
TO	OTAL		\$		19,2.00					
								20	d) . 154	2.21-
R. DIAZ, J. ORTIZ, . L. FELICIANO, L. R			7 / MA	RZO /	/ 2020		ING. AR	NALL	NAZARIO	MATTEL

DATE

SUPERVISOR

Pruebas OCB 0082

Client		OCS 0082			
Execution date	2/11/2020	Reason of the job	Routino		
Tested by	R.DIAŽ	Location	O.C.B#0062 SOUCO		
Approved by		Asset	Circuit breaker		
Report ID	2	Asset type	Dasd tenk oil breaker (OCB)		
Report issue date	3/6/2020 12:51;11 PM	Asset serial number	41-30125-9086		
Work order	6	Manufacturer	I,T,E.		

ummary		
		
		 · •

Performed tests	Assessment
Circuit Breeker PF & CAP Preliminares	Not assessed
Insulating Fluids PF & CAP Preliminares	Not assessed
Bushing PF & CAP - C1	Not assessed
Bushing PF & CAP - C2	Not assessed
Circuit Breaker PF & CAP Finales	Not assessed
Insulating Fluids PF & CAP Finales	Not assessed

	·····	
Overall Assessment	Not assessed	

Tested by:	Approved by:

Location & comp.	any information						
Location		Сотрапу	Сотрапу				
Name	O.C.B#0082 SOUCO	Сотрапу	P.R.E.P.A.				
Region	PONCE	Department	Subestaclones				
Division	T.D.C.E.P.S.E.	Apdress	Ave. HOSTOS				
Area	SUBESTACIONES	City	Ponce				
Plant	souco	State/Province	P.R.				
Address		Postal code					
City	GUAYANILLA	Country					
State/Province	P.R.	Phone No.	787-521-8647				
Postal code		Fax No.					
Country	-	E-mall	1				

Geo coordinates		
# 0 · / • • - · · · · · · · · · · · · · · · · ·		- 1

Contact person	
Name	
Phone No. 1	
Phone No. 2	
Fax No.	
E-mail	

Comment	

Dead tank oil break	er (OCB) nameplate data
Serial number	41-30125-1085
Manufacturer	I, T. €.
Menufecturing year	1970
Manufacturer type	230-KM-20000-20
Asset system code	
Apparatus ID	091-000-000-007
Leeger	
No. of phases	3

No, of interrupters p. phase	1
Pole operation	Ganged
Pre-insertion rosistors	No
PIR value	Ω
Grading capacitors	No
Capacitor value	ρF
Interrupting madium	OIL
Tank type	Dead tank

Соттелт

TESTED BEFORE MAINTENANCE AND TO INSPECT,

Ratings	
Rated frequency	60.00 Hz
Raied voitage L-L	242.0 kV
Rated current	2000.0 A
Rated SC breaking current	43.0 kA
Short-circuit nominal duration	5
Rated insut, level L-G (BIL)	900,0 kV
Rated interrupting time	ns
Interrupting duty cycle	
Rated power at closing	W
Rated power et opening	W
Rated power at motor charge	W

Total travel in Damping time ms

Others	DEMANDA DE SE		
Total weight with oil	84060 lbs	 	
Weight of oil	lbs		
Volume of oil	1960.0 gals		

Preumatic Operating med	reanism-pameplate,datar
Serial No.	41-30125-1085
Manufacturer	I.T.E.
Menufacturer type	P-45A
Manufacturing year	1970
Asset system code	

Component .	Raled voltage	Rated current	Frequency	
Тлір coli 1	V	A	Hz	DC
Close call 1	V	Α	Hz	DC
Aexiliary circuits	V	A	Hz	DC
Motor	V	A	H⊼	DC

Rated operating pressure	psl@t	· °C

Bushings nameplate data

Pos.	Serial No.	Marrufact.	Man. year	Voltage L-ground .	Max. system voltage	Rated current	Insuf, level L'L
1	1697361	General Electric	1970	kV.	242.0 kV	2000.0 A	900 kV
2	1687345	General Electric	1970	, kV;	242.0 kV	2000.0 A	800 KV
3	1686334	General Electric	1970	×ν	242.0 kV	2000.0 A	900 kV
4	1686332	General Electric	t970	kv	242,0 kV	2000.0 A	900 KV
5	1686333	General Electric	1970	kV	242.0 kV	2000.0 A	900 kV
6	1686329	General Electric	1970	kV	242.0 kV	2000.0 A	900 kV

İ	Pos.	Cap. (C1)	PF (C1)	Cap. (C2)	PF (C2)	Insulation type	Tap type

	Pos.	Cap. (C1)	PF (C1)	Cap. (C2)	PF (C2)	Insufation type	Tap type
•	1 1	459.00 pF	D.270 %	4223.0D pF	0.270 %		With test tap
V.	2	453.00 oF	0.250 %	4282.00 9F	0.250 %		With test tap
'	3	460.00 pF	0.260 %	4285.00 pF	0.280 %		With test tep
	4	458.00 pF	0.250 %	4552.00 pF	0.250 %		With lest tap
	5	459.00 pF	0.250 %	4236.00 pF	0.250 %		With test tap
	6	457.00 pF	0,260 %	AADB DO	0.260 %		With test tap

Ì

1

Test set information			
Model	Serial number	Calibration date	
TESTRANO 600	DK297Y	2019-03-06	
CP TD1	SC306Z	2019-03-27	

Global test conditions		1		
Weather	Clear		Hursidity	78 %
Unit location	Outside		Ambient temperature	38 °C

Operations counter	
Counter reading found	
Counter reading left	

.

Circuit Breaker PF & C		:		V. V	
	36 °C		Weather		
•			Humidity	78 %	

Consments	 	

Corr. factor			1							
*Reference	voltage		10.0 kV	<u>]</u>						
Meas,	Position	Test mede	Freq.	V aut	* Lout	* Watt foases	PF méas	PF corr	Cap, meas	Assessment
CiG	Ореп	GST	60.00 Hz	10.00 kV	2.65 mA	375.12 mW	D.6811 %	0,6611 %	€99.6 pF	Not see.
C2G	Ореп	95T	60.00 Hz	10.00 kV	2,65 mA	114,91 mW	D.4341 %	0.4341 %	6 99,1 pF	Not 859.
C3G	Ореп	GST	60.00 Hz	10.00 kV	2.85 mA	146,53 mW	0.5526 %	0.5528 %	700,4 pF	Not ess.
C4G	Open	GST	60.00 Hz	10.00 kV	2.70 mA	157.34 mW	0.5832 %	0.5832 %	712.7 pF	Not ass.
C5G	Ореп	GST	60.00 Hz	10.00 kV	2.65 mA	153.44 mW	0.6158 %	0.6158 %	700.9 pF	Not ass.
ÇBG	Open	GST	60.00 Hz	10.00 kV	2.74 mA	553.02 mW	2.0149 %	2.0149 %	724.8 pF	Not ass.
C1G+C2G	Closed	GST	60. 00 Hz	10.00 kV	5.13 mA	276.91 mW	0.5397 %	0.5397 %	135 8 .1 pF	Not ass.
C3G+C4G	Closed	GST	60.00 Hz	10.00 kV	5,20 mA	374.01 mW	0.7197 %	0.7197%	1375.¢ pF	Not ass.
C5G+C6G	Closed	GST	60.00 Hz	10.00 kV	5.22 mA	706.91 mW	1.3540 %	1.3540 %	138 1 .7 pF	Not ass.

Priese	Tank loss index	Assesement
A	-0.01	Not ass.
В	0.07	Not ass.
С	-0.01	Not ass.

Insulating Fluids PF 8	CAP Preliminares		
Ambient temperature	28 °C	 	
Oil temperature	24 °C		

Comments		 	
	· 		
			-
<u> </u>			

Corr	. factor			1}						
* Re	ference volta	ge ·		10.0 KV						
No.	Specimen	Test mode	Freq.	Vout	* i aut	* Watt losses	PF meas	PF corr	Cap, meas	Assessment
1	TANK 1	UST-A	80.00 Hz	10.80 kV	0.91 mA	7.57 mW	0.0833 %	0.0833 %	241.3 pF	Not ass.
2	TANK 2	UST-A	50.00 Hz	10.00 kV	0.91 mA	8.04 mW	0.0880 %	0.0880 %	242.4 pF	Not ass.
3	TANK 3	UST-A	B0.00 Hz	10.00 KV	0.92 mA	6.41 mW	0.0699 %	0.0699 %	243.0 pF	Not ass.
4	Semple 4	UST-A	60.00 Hz	KV	mA	mV∀	%	%	рF	Not ass.

PUBLING A FACTOR SA	и	1		
Ambient lemperature	36 °C		Weather	Clear
			Humidity	78 %

Comments	 	
i		
<u> </u>	<u> </u>	

Corr	factor			1						
• Rei	ference volta			10.0 kV						
No.	Meas.	Test mode	Freq.	Vout	*! out	* Watt losses	PF meas	PF corr	Сар, теаз	Assessment
1	Bushing 1	UST-A	80.00 Hz	10.00 kV	1.72 mA	68.56 mW	0.3975%	0.3975 %	457,5 pF	Not ass.
2	Bushing 2	UST-A	60.00 Hz	10,00 kV	f,70 mA	113,68 mW	0.6698 %	0.8698 %	450.2 ภ∓	Not ass.
3	Bushing 3	UST-A	60.00 Hz	10.00 kV	1.74 mA	104.85 m₩	0.6000 %	0.6000 %	462.7 pF	Not ass.
4	Bushing 4	UST-A	60.00 Hz	10.00 kV	1.71 mA	164.79 mW	0.9917 %	0.9617 %	454.5 oF	Not ass.
5	Bushing 5	UST-A	60.00 Hz	10.00 kV	t.73 mA	90.77 mW	0.5237 %	0.5237 %	459.8 oF	Not ass.
6	Sushing 6	UST-A	60.00 Hz	10.00 kV	2.71 mA	68.79 mW	0.4022 %	0.4022 %	453.7 pF	Not ass.

Bushing PF & CAP	62		
Ambient temperature	36 °C	Weather	Clear
		Humidity	78 %

Comments	

Corr.	factor			1						
* Ref	ference voita	ige		10.0 kV						
No.	Meas.	Test mode	Freq.	Vicut	* Loui	* Watt losses	PF meas	PF corr	Cap. meas	Assessment
1	Bushing 1	GSTg-A	60.00 Hz	0.50 kV	15.97 mA	112.77 mW	0.0706 %	0.0706 %	4233.4 pF	Not ass.
2	Bushing 2	GSTg-A	60,00 Hz	0.50 kV	16.20 mA	538.29 mW	0.3322 %	0.3322 %	4295.0 pF	Not aas.
3	Bushing 3	GSTg-A	60,00 Hz	0.50 kV	16.16 mA	547.32 mW	0. 3 3B7 %	0.3387 %	4283,4 pF	Not ass.
4	Bushing 4	GSTg-A	60.00 Hz	0.50 kV	16.02 mA	64 4.23 mW	0.4022 %	0.4022 %	4246.0 pF	Not ass,
5	Bushing 5	GSTg-A	60.00 Hz	0.50 KV	16.31 mA	291.70 m₩	0.1788 %	0.1788 %	4324.0 pF	Not ass.
8	Bushing 6	GSTg-A	60.00 Hz	0.50 kV	16.56 mA	656.19 mW	0.3982 %	0,3962 %	4390.2 pF	Not ass,

Circuit Breaker PF & C	AP Finales		
Ambient temperature	34 °C	Weather	Clear
		Hunddity	85 %

Comments

CONTACT RESISTANT AFTER MAINTENANCE;
PHASE #1= 856 microhme
PHASE#2 = 956 microhme
PHASE#3 = 605 microhms

Corr. factor			1]						
• Reference	voltage		10.0 ≹√	1						
Meas.	. Position	Test mode	Freg.	Vout	*1 out	*Watt losses	PF meas	₽F corr	Cap. meas	Assessment
C1G	Open	GST	60.00 Hz	10.00 KV	2.71 mA	328.27 mW	1.2112 %	1.2112 %	715.9 pF	Not ass.
Ç2G	Open	GST	60.00 Hz	10.00 kV	2.64 mA	215.11 mW	0.8161 %	0.8161 %	696.1 pF	Not ass.
C3G	Open	GST	60.00 Hz	10.00 kV	2.71 mA	278.97 mW	1.0307 %	1.0307 %	714.9 pF	Not ass.
C4G	Open	GST	60.00 Hz	10.00 kV	2.68 mA	275.95 mW	1. 02 94 %	1.0294 %	70 8 .1 pF	Not ass.
C5G	Open	GST	60.00 Hz	10.00 kV	2.66 mA	198. 8 2 mW	0.7467 %	0.7467 %	70 3 .1 pF	Not ass.
C6G	Ореп	GST	60.00 Hz	10.00 kV	2,65 mA	160,98 mW	0.6074 %	0.6074 %	699.9 pF	Not ass.
C1G+C2 G	Closed	GST	60,00 Hz	10,00 kV	5.13 mA	334.53 mW	0.6525 %	0.6525 %	1356.8 pF	Not ass.
C3G+C4G	Closed	GST	60,00 Hz	10.00 kV	5.19 mA	431.09 mW	0.8314 %	0.8314 %	137 2.5 pF	Not ass.
C5G+C6G	Closed	G \$T	60,00 Hz	10.00 kV	5.13 mA	317.91 mW	0.6200 %	0.6200 %	1357.2 pF	Not ass.

Phasé	Tank loss index	Assessment
A	-0.21	Not ese.
₿	0,12	Not ass.
C	-0.04	Not ses.

	Insulating Fluids PF &	CAP Finales	
•	Ambient temperature	34 °C	
	Oil temperature	20 °C	

Comments

BREAKDÓWN: TK#1=28.2 kv TK#2=24.8 kv TK#3=26.6 kv

Corr	. Factor			1						
*Re	ference volta	gė		10.0 KV						
No.	Specimen	Test mode	Freq.	Vout	* I out	* Watt losses	PF meas	PF corr	Cap. meas	Assessment
1	TANK#1	UST-A	60.00 Hz	10.00 kV	0.91 mA	11.72 mW	0.1288 %	0.1288 %	241.5 pF	Not ass.
2	TANK#2	ŲST-A	60.00 Hz	10.00 KV	0.91 mA	9.56 mW	0.1053 %	0.1053 %	240.8 pF	Not ass.
3	TANK#3	U\$T-A	60.00 Hz	10.00 kV	0.91 mA	11.34 mW	0.1245 %	0.1245 %	241.7 pF	Not ass.
4	Sample 4	Ų\$T-A	60.00 Hz	kV	mA	rsVV	%	%.	pF	Not ass.

'Prueba Velocidad OCB 0082 - Trip

Nameplate

Туре	Oil Breaker	Description	О.С.В.
Manufacturer	ITE	Circuit Number	0082
Model no.	230KM20000-2D	Mechanism Type	P-46A
Company	P.R.E.P.A.	Mechanism Book no.	
Location	SOUCO	Instruction Book no.	
Division	T&D.C.E.P.\$.E.	Operation Counter	
Serial no.	091-000-000-007	Line Frequency	60 Hz
Special ID		Operator	R.DIAZ
		<pre><custom 1="" label=""></custom></pre>	
<u>.</u>		<pre><custom 2="" label=""></custom></pre>	
Ріал Туре	Test Result	Test Run	Mar 5, 2020 10:44:01
	Instrument Details:	Instrument Model	TDR 900
		Serial Number	
		Calibrated	

Main Contact Results: Trip

Mai	n Contact Timing					Synchronization		
	Channel	Label	Phase	Time	Status		In E	3reaker
	OCB-A		Phase A	2208.00 cy	Pass		102,00 6y	No status
-	OCB-8		Phase B	2292.00 cy	Pass			
Ĺ	OCB-C		Phase C	2190.00 cy	Pass			

Basic Limits

্বreaking Timing Limi	ts					
•		Tin	ning	S	ynchronizatio	ın
		Minimum	Maximum	In Breaker	In Phase	In Module
	Орел	16.7 ms	41.7 mg	0.0 ms	0.0 ms	0.0 гда
Main Contacts	Close	166.7 ms	333.3 ms	0.0 ms	0.0 ms	0.0 ms
	Reclose	0.0 ms	0.0 ខាន	0.0 ms	0.0 ms	0.0 ms
TripFi	ree Dwell Time	16.7 ms	50.0 ms			
Rectose Op	en-Close Time	0.0 ms	em 0.0			
Resistor Timing Limit	ts					
		Tin	ning	8	ynchronizatio	en
		Midimum	Meximum	In Breaker	in Phase	in Module
Ref. to Test Initiation	Open	0.0 ms	0.0 ms	8m 0.0	0.0 ms	0.0 ms
	Close	0.0 ms	6.0 ms	0.0 ms	0.0 ms	0.0 ms
Rel. to Main	Open	0.0 ms	0.0 ms	0.0 ms	0.0 ms	0.0 ms
	Close	era 0.0	0.0 ms	0.0 ma	0.0 ms	0.0 ms
Resi	stor Debounce	200 us				
Resistance Limits						
		Minlmum	Maximum			
Op	en Resistence	Ω 0.0	0.0 Ω			
Cio	se Resistence	Ω $0,0$	Ω 0,0			
Capacitance Limits		,				
		Minimum	Meximum			
Capa	citance Limits	0.0 pF	0.0 pF			

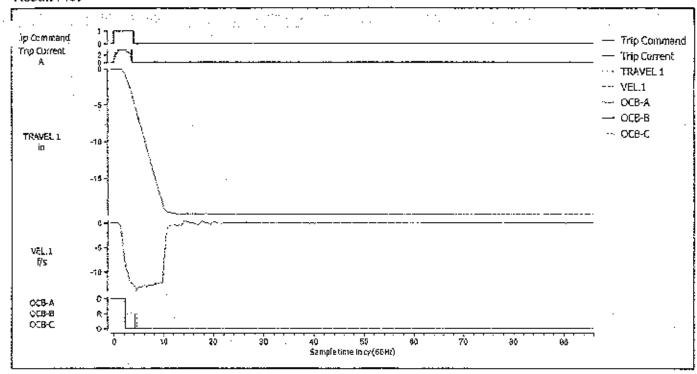
· Motton Measurements

			Velocity	Travel				
Channel		Zол∌ 1	Zone 2	Total Travel	Overtravel	Rebound	Contact Wipe	Damping
Motion-1	Zone Type	Distance; Distance	Distance; Distance					
(TRAVEL 1)	Measured	3.222 m/s		19.929 เก	0.021 in	0.045 in		7410.00 cy
Phase Undefined	Limits - Max	3,658 m/s	3.658 m/s	20.750 In	0.500 iກ	0.500 in		
	Limits - Min	3.048 m/s		19.250 in	0.000 іл	0.000 In		

Motion Measurements, Main Contacts Open/Close

			At I	Main Contac	negO f	· · · · · · · · · · · · · · · · · · ·
Channel	Labei	Phase	Travel from Start Position	Average Velocity	Time from Initiation	Motion Reference Channel
OCB-A	OCB-A	Phase A	0.739 in	2.258 m/s	2208.00 cy	Motion-1
OC8-B	OCB-B	Phase B	0.868 in	2.364 m/s	2292.00 cy	Motion-1
OCB-C	OCB-C	Phase C	0.712 in	2.187 m/s	2190.00 cy	Motion-1

Travel Limits


	Travel Type Label	+	Total Travel	Overtravel		Rebound		Contact Wipe
	•			Open	Close	Open	Close	
Limits Set #1	Lìnear							
1		Expected	20.000 ln	0. 25 0 ln	0.250 in	0.250 in	0.125 in	0.750 In
į.		Tolerance -	0.750 ln	0.250 in	0.250 in	0.250 in	0.125 ln	0.125 in
<u> </u>		Tolerance +	0.750 ln	0.250 ln	0.125 in	0.250 ln	0.125 In	0.250 in

Average Velocity Limits

			2	Zone Detalls	Velocity		
	Action	Zone	Zone Type	From	To	Minimum	Maximum
Limits Set #1 (Linear)							
	Open	1	Distance; Distance	1.000 in	4.000 in	3.048 m/s	3.658 m/s
	Open	2	Distance; Distance	0.000 in	Q.000 In	0.000 m/s	0.000 m/s
	Close	1	Distance; Distance	5.000 in	1.000 in	3.658 m/s	4.420 m/s
	Close	2	Distance; Distance	0.000 in	0.000 In	0.000 m/s	0.000 m/s

Priceba Velocidad OCB 0082 - Trip

ResultiPlot

Breaker Test Details

	· · · · · · · · · · · · · · · · · · ·			
est Style	QCB	Include Resistors	NO	
	· — - · · ·	· · · · · · · · · · · · · · · · · · ·		·

Filename F:\Update\Informes\A\(\text{A\(\text{fio}\)}\) 2020\Marzo 2020\Costa Sur\OCB 0082_3-5-2020_104401_Trip.tdrx

Prueba Velocidad OCB 0082 - Close

Nameplate

Туре	Oll Breaker	Description	O.C.B.
Manufacturer	ŧTŒ	Circuit Number	0082
Model no.	230KM20000-20	Mechanism Type	P-45A
Company	P.R.E.P.A.	Machanism Book no.	
Location	SOUCO	Instruction Book no.	
Division	T&D.C.E.P.S.E.	Operation Counter	
Serial no.	091-000-000-007	Line Frequency	60 Hz
Special ID		Operator	R.DIAZ
[<gustom 1="" label=""></gustom>	
		<pre><custom 2="" label=""></custom></pre>	
Plan Type	Test Result	Test Run	Mar 5, 2020 10:40:03
	Instrument Details:	Instrument Model	TDR 900
ŀ		Serial Number	
		Celibrated	

Main Contact Results: Close

Main Contact Timing	7				Synchronization	
Channel	Label	Phase	Time	Status		In Breaker
OGB-A		Phase A	17646.00 cy	Pass	4	2.00 cy No status
OCB-B		Phase B	17604.00 cy	Pass		
OCB-C		Phaee C	17646.00 cy	Pass		

Basic Limits

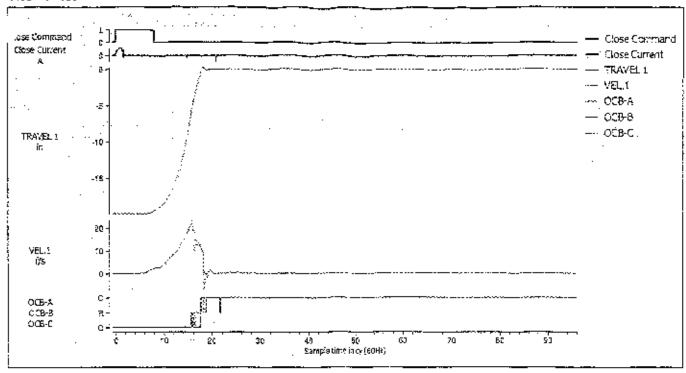
reaking Timing Lin	nits						
		Tin	ting	9	ynchronizatio	អា	
		Minlmum	Maximum	In Breaker	in Phase	in Modul e	
	Орел	16,7 ms	41.7 ms	0.0 ms	0.0 ms	0.0 ms	
Main Contacts	C cse	186.7 ms	333.3 ms	0.0 ms	0.0 ms	0.0 ms	
	Reclose	0.0 ms	0.0 ms	0.0 ms	em 0.0	0.0 ms	
qirT	Free Dwell Time	16.7 ms	60.0 ms				
Reclose O	pen-Close Time	am 0.0	0.0 ms				
Resistor Timing Lim	ilts						
		Tin	ılng	S	ynchronizatio	n	
		Minimum	Maximum	in Breaker	in Phase	In Module	
Rel. to Test initiation	Ореп	0.0 ms	0.0 ms	0.0 ms	0.0 ms	0.0 ms	
	Close	0.0 ms	Q.D ms	0.0 ms	0.0 ms	0.0 ms	
Rel. to Main	o Open	0.0 ms	0.0 ms	0.0 ms	0.0 ms	0.0 ms	
	Clase	em 0.0	em 0.0	0.0 ms	0.0 ms	0.0 ms	
Res	sistor Debounce	200 us					
Resistance Limits						·	
		Minimum	Maxlmum				
C	pen Resistence	$\Omega = 0.0$	0.0 Ω				
c	lose Resistence	0.0 Ω	0.0 Ω				
Capacitance Limits							
		Minimum	Maximum				
Caj	packance Limits	0.0 pF	0.0 pF				

Motion Measurements

		١	Velocity		Travel				
Channal		Zone 1	Zone 2	Total Travel	Overtravel	Rebound	Contact Wipe	Damping	
Motion-1	Zone Type	Distance; Distance	Distance; Distance						
(TRAVEL 1)	Measured	4.030 m/s		19.934 in	0.279 fn	0.101 in	0.679 in		
Phase Undefined	Limits - Max	4.420 m/s	4.420 m/s	20.750 in	0.375 In	0.250 ln	1. 00 0 ln		
	Limits - Min	3.668 m/s		19.250 ln	0.000 in	0. 0 00 in	0.625 in		

Motion Measurements, Main Contacts Open/Close

			At Main Contact Close
Channel	Label	Phase	Travel from Average Time from Motion Start Velocity Initiation Reference Position Channel
OCB-A	OCB-A	Phase A	19.255 in 3.387 m/s 17646.00 cy Motlon-1
OCB-B	QCB-B	Phase B	19.160 in 3.563 m/s 17604.00 cy Motton-1
OCB-C	OCB-C	Phase C	19.255 in 3.387 m/s 17646.00 cy Motion-1


Travel Limits

	Travel Type	Label		Total Travel	Ove	ertravel	Rebound		Contact Wipe
					Open	Closa	Open	Close	
Limits Set #1	Linear								
:			Expected	20.000 in	0.250 lp	0.250 in	0.250 in	0.125 in	0.75 0 in
ı.'			Tolerance -	0.750 in	0.250 in	0.250 in	0.250 ln	0.125 in	0.125 in
	<u> </u>		Tolerance +	0.750 in	0.260 in	0.125 la	0.250 in	0.125 in	0.250 fn

Average Velocity Limits

			ž	Zone Details	Velocity		
d books about and	Action	Zone	Zone Type	From	Tρ	Minimum	Maximum
Limks Set #1 (Linear)							
	Open	f	Distance; Distance	3.000 in	4.000 ln	3,048 m/s	3.658 m/s
	Open	2	Distance; Distance	0.000 in	0.000 In	0.000 m/s	0.000 m/s
	Close	1	Distance; Distance	5.000 in	1.000 เก	3.658 m/s	4.420 m/s
	Close	2	Distance; Distance	0.000 in	0.000 In	0.000 m/s	0.000 m/s

Rest if Plot

Breaker Test Details

· · · · · · · · · · · · · · · · · · ·				 		
æt Style	OCS	Include Resistors	NO			į
				 		

Filename E:\Update\Informes\Año 2020\Marzo 2020\Gosta Sur\QCB 0982_3-5-2020_104003_Close,torx